Skip to main content

Three-Dimensional Biomechanical Assessment of Knee Ligament Ruptures

  • Chapter
  • First Online:
Biomechanics and Biomaterials in Orthopedics

Abstract

The complex biomechanics of the human knee joint are the result of an equilibrium of forces exerted by its surrounding soft tissue structures. When one of these forces is removed, as is the case when a ligament ruptures, a redistribution of forces occurs and the biomechanical properties of the knee are altered. One of the most frequently diagnosed knee ligament ruptures is that of the anterior cruciate ligament (ACL). Such a rupture causes increased laxity of the knee joint as well as a complex rotational and translational instability whereby many patients describe a feeling that their knee is slipping, or “giving way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bull AMJ, Amis AA. The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee. 1998;5:141–58.

    Article  Google Scholar 

  2. Bicer EK, Lustig S, Servien E, Selmi TA, Neyret P. Current knowledge in the anatomy of the human anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2010;18(8):1075–84.

    Article  PubMed  Google Scholar 

  3. Bahr R, Krosshaug T. Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med. 2005;39:324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chan KM, Fong DT, Hong Y, Yung PS, Lui PP. Orthopaedic sport biomechanics - a new paradigm. Clin Biomech (Bristol, Avon). 2008;23 Suppl 1:S21–30.

    Article  Google Scholar 

  5. Woo SL-Y, Adams D, Takai S. The human anteriorcruciate ligamentand its replacement: biomechanical considerations. In: Niwa S, Perren S, Hattori T, editors. Biomechanics in orthopedics. Tokyo: Springer; 1993. p. 13–30.

    Google Scholar 

  6. Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop. 1975:216–31.

    Google Scholar 

  7. Furman W, Marshall JL, Girgis FG. The anterior cruciate ligament. A functional analysis based on postmortem studies. J Bone Joint Surg Am. 1976;58:179–85.

    CAS  PubMed  Google Scholar 

  8. Favre J, Luthi F, Jolles BM, Siegrist O, Najafi B, Aminian K. A new ambulatory system for comparative evaluation of thee-dimansional knee kinematics, applied to anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. 2006;14:592–604.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang LQ, Shiavi RG, Limbird TJ, Minorik JM. Six degrees-of-freedom kinematics of ACL deficient knees during locomotion-compensatory mechanism. Gait Posture. 2003;17:34–42.

    Article  PubMed  Google Scholar 

  10. Sati M, de Guise JA, Larouche S, Drouin G. Quantitative assessment of skin-bone movement at the knee. Knee. 1996;3:121–38.

    Article  Google Scholar 

  11. Alexander EJ, Andriacchi TP. Correcting for deformation in skin-based marker systems. J Biomech. 2001;34:355–61.

    Article  CAS  PubMed  Google Scholar 

  12. Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renstrom P. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture. 2006;24(2):152–64.

    Article  PubMed  Google Scholar 

  13. Holden J, Orsini J, Siegel K, Kepple T, Gerber L, Stanhope S. Surface movement errors in shank kinematics and knee kinetics during gait. Gait Posture. 1997;5:217–27.

    Article  Google Scholar 

  14. Manal K, McClay Davis I, Galinat B, Stanhope S. The accuracy of estimating proximal tibial translation during natural cadence walking: bone vs. skin mounted targets. Clin Biomech (Bristol, Avon). 2003;18:126–31.

    Article  CAS  Google Scholar 

  15. Manal K, McClay I, Stanhope S, Richards J, Galinat B. Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study. Gait Posture. 2000;11:38–45.

    Article  CAS  PubMed  Google Scholar 

  16. Reinschmidt C, van den Bogert AJ, Nigg BM, Lundberg A, Murphy N. Effect of skin movement on the analysis of skeletal knee joint motion during running. J Biomech. 1997;30:729–32.

    Article  CAS  PubMed  Google Scholar 

  17. Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng. 1998;120:743–9.

    Article  CAS  PubMed  Google Scholar 

  18. Waite JC, Beard DJ, Dodd CA, Murray DW, Gill HS. In vivo kinematics of the ACL-deficient limb during running and cutting. Knee Surg Sports Traumatol Arthrosc. 2005;13:377–84.

    Article  CAS  PubMed  Google Scholar 

  19. Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8:383–92.

    Article  CAS  PubMed  Google Scholar 

  20. Cappozzo A, Catani F, Leardini A, Benedetti MG, Croce UD. Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech (Bristol, Avon). 1996;11:90–100.

    Article  Google Scholar 

  21. Cheze L, Fregly BJ, Dimnet J. A solidification procedure to facilitate kinematic analyses based on video system data. J Biomech. 1995;28:879–84.

    Article  CAS  PubMed  Google Scholar 

  22. Levens A, Inman V, Blosser J. Transverse rotation of the segments of the lower extremity in locomotion. J Bone Joint Surg. 1948;30:859–72.

    Google Scholar 

  23. Ferber R, McClay Davis I, Williams 3rd DS, Laughton C. A comparison of within- and between-day reliability of discrete 3D lower extremity variables in runners. J Orthop Res. 2002;20:1139–45.

    Article  CAS  PubMed  Google Scholar 

  24. Streiner DL, Norman GR. Health measurement scales : a practical guide to their development and use. New York: Oxford University Press; 2003.

    Google Scholar 

  25. Goujon H, Bonnet X, Sautreuil P, Maurisset M, Darmon L, Fode P, et al. A functional evaluation of prosthetic foot kinematics during lower-limb amputee gait. Prosthet Orthot Int. 2006;30:213–23.

    Article  CAS  PubMed  Google Scholar 

  26. Houck J, Yack HJ, Cuddeford T. Validity and comparisons of tibiofemoral orientations and displacement using a femoral tracking device during early to mid stance of walking. Gait Posture. 2004;19:76–84.

    Article  PubMed  Google Scholar 

  27. Marin F, Allain J, Diop A, Maurel N, Simondi M, Lavaste F. On the estimation of knee joint kinematics. Hum Mov Sci. 1999;18:613–26.

    Article  Google Scholar 

  28. Sati M, de Guise JA, Larouche S, Drouin G. Improving in vivo knee kinematic measurements: application to prosthetic ligament analysis. Knee. 1996;3:179–90.

    Article  Google Scholar 

  29. Ganjikia S, Duval N, Yahia LH, de Guise J. Three-dimensional knee analyzer validation by simple fluoroscopic study. Knee. 2000;7:221–31.

    Article  PubMed  Google Scholar 

  30. Labbe DR, de Guise JA, Godbout V, Grimard G, Baillargeon D, Lavigne P, et al. Accounting for velocity of the pivot shift test manoeuvre decreases kinematic variability. Knee. 2011;18(2):88–93.

    Article  PubMed  Google Scholar 

  31. Kinzel GL, Gutkowski LJ. Joint models, degrees of freedom, and anatomical motion measurement. J Biomech Eng. 1983;105:55–62.

    Article  CAS  PubMed  Google Scholar 

  32. Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–44.

    Article  CAS  PubMed  Google Scholar 

  33. Kinzel GL, Hall Jr AS, Hillberry BM. Measurement of the total motion between two body segments. I analytical development. J Biomech. 1972;5:93–105.

    Article  CAS  PubMed  Google Scholar 

  34. Cappozzo A. Gait analysis methodology. Hum Mov Sci. 1984;3:27–50.

    Article  Google Scholar 

  35. Hagemeister N, Parent G, Van de Putte M, St-Onge N, Duval N, de Guise J. A reproducible method for studying three-dimensional knee kinematics. J Biomech. 2005;38:1926–31.

    Article  PubMed  Google Scholar 

  36. Siston RA, Delp SL. Evaluation of a new algorithm to determine the hip joint center. J Biomech. 2006;39:125–30.

    Article  PubMed  Google Scholar 

  37. Lam MH, Fong DT, Yung P, Ho EP, Chan WY, Chan KM. Knee stability assessment on anterior cruciate ligament injury: clinical and biomechanical approaches. Sports Med Arthrosc Rehabil Ther Technol. 2009;1:20.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wexler G, Hurwitz DE, Bush-Joseph CA, Andriacchi TP, Bach BR Jr. Functional gait adaptations in patients with anterior cruciate ligament deficiency over time. Clin Orthop. 1998:166–75.

    Google Scholar 

  39. Andriacchi TP, Briant PL, Bevill SL, Koo S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res. 2006;442:39–44.

    Article  PubMed  Google Scholar 

  40. Andriacchi TP, Dyrby CO. Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech. 2005;38:293–8.

    Article  PubMed  Google Scholar 

  41. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N. Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med. 2003;31:75–9.

    PubMed  Google Scholar 

  42. Knoll Z, Kocsis L, Kiss RM. Gait patterns before and after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2004;12:7–14.

    Article  PubMed  Google Scholar 

  43. Torry MR, Decker MJ, Ellis HB, Shelburne KB, Sterett WI, Steadman JR. Mechanisms of compensating for anterior cruciate ligament deficiency during gait. Med Sci Sports Exerc. 2004;36:1403–12.

    Article  PubMed  Google Scholar 

  44. Alkjaer T, Simonsen EB, Jorgensen U, Dyhre-Poulsen P. Evaluation of the walking pattern in two types of patients with anterior cruciate ligament deficiency: copers and non-copers. Eur J Appl Physiol. 2003;89:301–8.

    Article  PubMed  Google Scholar 

  45. Berchuck M, Andriacchi TP, Bach BR, Reider B. Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am. 1990;72:871–7.

    CAS  PubMed  Google Scholar 

  46. Bulgheroni P, Bulgheroni MV, Andrini L, Guffanti P, Castelli C. Walking in anterior cruciate ligament injuries. Knee. 1997;4:159–65.

    Article  Google Scholar 

  47. Perry J. Gait analysis: normal and pathological function. Thorofare: SLACK Incorporated; 1992.

    Google Scholar 

  48. Whittle MW. Gait analysis: an introduction. Edinburgh/Toronto: Butterworth Heinemann Elsevier; 2007.

    Google Scholar 

  49. Chau T, Young S, Redekop S. Managing variability in the summary and comparison of gait data. J Neuroeng Rehabil. 2005;2:22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vaughan CL. Are joint torques the Holy Grail of human gait analysis ? Hum Mov Sci. 1996;15:423–43.

    Article  Google Scholar 

  51. Andriacchi TP. Dynamics of pathological motion: applied to the anterior cruciate deficient knee. J Biomech. 1990;23 Suppl 1:99–105.

    Article  PubMed  Google Scholar 

  52. Roberts CS, Rash GS, Honaker JT, Wachowiak MP, Shaw JC. A deficient anterior cruciate ligament does not lead to quadriceps avoidance gait. Gait Posture. 1999;10:189–99.

    Article  CAS  PubMed  Google Scholar 

  53. Hurd WJ, Snyder-Mackler L. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J Orthop Res. 2007;25:1369–77.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Noyes FR, Schipplein OD, Andriacchi TP, Saddemi SR, Weise M. The anterior cruciate ligament-deficient knee with varus alignment. An analysis of gait adaptations and dynamic joint loadings. Am J Sports Med. 1992;20:707–16.

    Article  CAS  PubMed  Google Scholar 

  55. Patel RR, Hurwitz DE, Bush-Joseph CA, Bach B, Andriacchi TP. Comparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency. Am J Sports Med. 2003;31:68–74.

    PubMed  Google Scholar 

  56. Rudolph KS, Eastlack ME, Axe MJ, Snyder-Mackler L. Basmajian Student Award Paper: movement patterns after anterior cruciate ligament injury: a comparison of patients who compensate well for the injury and those who require operative stabilization. J Electromyogr Kinesiol. 1998;8:349–62.

    Article  CAS  PubMed  Google Scholar 

  57. Beard DJ, Soundarapandian RS, O’Connorc JJ, Dodd CA. Gait and electromyographic analysis of anterior cruciate ligament deficient subjects. Gait Posture. 1996;4:83–8.

    Article  Google Scholar 

  58. Boerboom AL, Hof AL, Halbertsma JP, van Raaij JJ, Schenk W, Diercks RL, et al. Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc. 2001;9:211–6.

    Article  CAS  PubMed  Google Scholar 

  59. Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L. Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc. 2001;9:62–71.

    Article  CAS  PubMed  Google Scholar 

  60. Ferber R, Osternig LR, Woollacott MH, Wasielewski NJ, Lee JH. Gait mechanics in chronic ACL deficiency and subsequent repair. Clin Biomech (Bristol, Avon). 2002;17:274–85.

    Article  Google Scholar 

  61. Hart JM, Ko JW, Konold T, Pietrosimione B. Sagittal plane knee joint moments following anterior cruciate ligament injury and reconstruction: a systematic review. Clin Biomech (Bristol, Avon). 2010;25(4):277–83.

    Article  Google Scholar 

  62. Dumas R, Aissaoui R, de Guise JA. A 3D generic inverse dynamic method using wrench notation and quaternion algebra. Comput Methods Biomech Biomed Engin. 2004;7:159–66.

    Article  CAS  PubMed  Google Scholar 

  63. Bulgheroni P, Bulgheroni MV, Andrini L, Guffanti P, Giughello A. Gait patterns after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 1997;5:14–21.

    Article  CAS  PubMed  Google Scholar 

  64. Gao B, Zheng NN. Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clin Biomech (Bristol, Avon). 2010;25:222–9.

    Article  Google Scholar 

  65. Lewek MD, Chmielewski TL, Risberg MA, Snyder-Mackler L. Dynamic knee stability after anterior cruciate ligament rupture. Exerc Sport Sci Rev. 2003;31:195–200.

    Article  PubMed  Google Scholar 

  66. Papadonikolakis A, Cooper L, Stergiou N, Georgoulis AD, Soucacos PN. Compensatory mechanisms in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc. 2003;11:235–43.

    Article  PubMed  Google Scholar 

  67. Beynnon BD, Fleming BC, Labovitch R, Parsons B. Chronic anterior ligament deficiency is associated with increased anterior translation of tibia during the transition from non-weightbearing to weightbearing. J Orthop Res. 2002;20:332–7.

    Article  PubMed  Google Scholar 

  68. Marans HJ, Jackson RW, Glossop ND, Young C. Anterior cruciate ligament insufficiency: a dynamic three-dimensional motion analysis. Am J Sports Med. 1989;17:325–32.

    Article  CAS  PubMed  Google Scholar 

  69. Ellison AE. The pathogenesis and treatment of anterolateral rotatory instability. Clin Orthop Relat Res. 1980:51–5.

    Google Scholar 

  70. Scholten RJ, Opstelten W, van der Plas CG, Bijl D, Deville WL, Bouter LM. Accuracy of physical diagnostic tests for assessing ruptures of the anterior cruciate ligament: a meta-analysis. J Fam Pract. 2003;52:689–94.

    PubMed  Google Scholar 

  71. Katz JW, Fingeroth RJ. The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med. 1986;14:88–91.

    Article  CAS  PubMed  Google Scholar 

  72. Kim SJ, Kim HK. Reliability of the anterior drawer test, the pivot shift test, and the Lachman test. Clin Orthop Relat Res. 1995:237–42.

    Google Scholar 

  73. Liu SH, Osti L, Henry M, Bocchi L. The diagnosis of acute complete tears of the anterior cruciate ligament. Comparison of MRI, arthrometry and clinical examination. J Bone Joint Surg Br. 1995;77:586–8.

    CAS  PubMed  Google Scholar 

  74. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:629–34.

    Article  PubMed  Google Scholar 

  75. Eastlack ME, Axe MJ, Snyder-Mackler L. Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc. 1999;31:210–5.

    Article  CAS  PubMed  Google Scholar 

  76. Lephart SM, Perrin DH, Fu FH, Gieck JH, McCue FC, Irrgang JJ. Relationship between selected physical characteristics and functional capacity in the anterior cruciate ligament-insufficient athlete. J Orthop Sports Phys Ther. 1992;16:174–81.

    Article  CAS  PubMed  Google Scholar 

  77. Engstrom B, Gornitzka J, Johansson C, Wredmark T. Knee function after anterior cruciate ligament ruptures treated conservatively. Int Orthop. 1993;17:208–13.

    Article  CAS  PubMed  Google Scholar 

  78. Pollet V, Barrat D, Meirhaeghe E, Vaes P, Handelberg F. The role of the Rolimeter in quantifying knee instability compared to the functional outcome of ACL-reconstructed versus conservatively-treated knees. Knee Surg Sports Traumatol Arthrosc. 2005;13:12–8.

    Article  CAS  PubMed  Google Scholar 

  79. Jonsson H, Riklund-Ahlstrom K, Lind J. Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5-9 years after surgery. Acta Orthop Scand. 2004;75:594–9.

    Article  PubMed  Google Scholar 

  80. Tamea Jr CD, Henning CE. Pathomechanics of the pivot shift maneuver. An instant center analysis. Am J Sports Med. 1981;9:31–7.

    Article  PubMed  Google Scholar 

  81. Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA. Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res. 2005:229–36.

    Google Scholar 

  82. Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res. 1980:45–50.

    Google Scholar 

  83. Hefti E, Müller W, Jakob R, Stäubli H. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc. 1993;1:226–34.

    Article  CAS  PubMed  Google Scholar 

  84. Lane CG, Warren R, Pearle AD. The pivot shift. J Am Acad Orthop Surg. 2008;16:679–88.

    Article  PubMed  Google Scholar 

  85. Noyes FR, Grood ES, Cummings JF, Wroble RR. An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med. 1991;19:148–55.

    Article  CAS  PubMed  Google Scholar 

  86. Amis AA, Cuomo P, Siva Rama RB, Giron F, Bull AM, Thomas R, et al. Measurement of knee laxity and pivot-shift kinematics with magnetic sensors. Oper Techn Orthop. 2008;18:8.

    Article  Google Scholar 

  87. Kubo S, Muratsu H, Yoshiya S, Mizuno K, Kurosaka M. Reliability and usefulness of a new in vivo measurement system of the pivot shift. Clin Orthop Relat Res. 2007;454:54–8.

    Article  PubMed  Google Scholar 

  88. Bull AM, Earnshaw PH, Smith A, Katchburian MV, Hassan AN, Amis AA. Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br. 2002;84:1075–81.

    Article  CAS  PubMed  Google Scholar 

  89. Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, et al. In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med. 2007;35:1098–104.

    Article  PubMed  Google Scholar 

  90. Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M. Pivot-shift test: Analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res. 2010;28:164–9.

    PubMed  Google Scholar 

  91. Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD. In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16:487–92.

    Article  PubMed  Google Scholar 

  92. Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, et al. Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech. 2010;43(16):3080–4.

    Article  PubMed  Google Scholar 

  93. Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, et al. Objective grading of the pivot shift phenomenon using a support vector machine approach. J Biomech. 2011;44(1):1–5.

    Article  PubMed  Google Scholar 

  94. Ho R. Handbook of univariate and multivariate data analysis and interpretation with SPSS. Chapman: Chapman & Hall/CRC; 2006.

    Book  Google Scholar 

  95. Chan YY, Fong DT, Chung MM, Li WJ, Liao WH, Yung PS, et al. Identification of ankle sprain motion from common sporting activities by dorsal foot kinematics data. J Biomech. 2010;43:1965–9.

    Article  PubMed  Google Scholar 

  96. Lauer RT, Smith BT, Betz RR. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy. IEEE Trans Biomed Eng. 2005;52:1532–40.

    Article  PubMed  Google Scholar 

  97. Giansanti D, Macellari V, Maccioni G. New neural network classifier of fall-risk based on the Mahalanobis distance and kinematic parameters assessed by a wearable device. Physiol Meas. 2008;29:N11–9.

    Article  PubMed  Google Scholar 

  98. Lau HY, Tong KY, Zhu H. Support vector machine for classification of walking conditions of persons after stroke with dropped foot. Hum Mov Sci. 2009;28:504–14.

    Article  PubMed  Google Scholar 

  99. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

    Article  CAS  PubMed  Google Scholar 

  100. Andriacchi TP, Mundermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol. 2006;18:514–8.

    Article  PubMed  Google Scholar 

  101. Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR. Association between abnormal kinematics and degenerative change in knees of people with chronic anterior cruciate ligament deficiency: a magnetic resonance imaging study. Aust J Physiother. 2005;51:233–40.

    Article  PubMed  Google Scholar 

  102. Peeler J, Leiter J, MacDonald P. Accuracy and reliability of anterior cruciate ligament clinical examination in a multidisciplinary sports medicine setting. Clin J Sport Med. 2010;20:80–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the participation of the clinicians in the different studies presented in this chapter: Dr Tim Heron and Dr Véronique Godbout, University hospital of University of Montreal, Dr Patrick Lavigne, Maisonneuve-Rosemont Hospital, Dr Guy Grimard, Ste-Justine Hospital, Dr Pierre Ranger and Dr Julio Fernandes, Sacré-Coeur Hospital and Dr David Baillargeon, Cité de la santé, Montréal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hagemeister PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Labbe, D.R., Fuentes, A., de Guise, J.A., Aissaoui, R., Hagemeister, N. (2016). Three-Dimensional Biomechanical Assessment of Knee Ligament Ruptures. In: Poitout, D. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-84882-664-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-664-9_39

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-663-2

  • Online ISBN: 978-1-84882-664-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics