Skip to main content

An Interventionalist’s Perspective: Diagnosis of Cardiovascular Disease

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

Coronary computed tomographic angiography (CCTA) has become one of the diagnostic tests of choice for the determination of the presence and severity of coronary atherosclerosis. With its high specificity, CCTA can be an extremely helpful test in determining which patients do not require cardiac catheterization. Given this fact, it seems somewhat counter-intuitive that the interventional cardiology community has embraced this technology. One would theorize that a strong noninvasive angiography program would reduce volume and divert patients away from the catheterization lab. In fact, centers where CCTA is available do not appear to have lead to a reduction in invasive volumes [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auseon AJ, Advani SS, Bush CA, Raman SV. Impact of 64-slice multidetector computed tomography on other diagnostic studies for coronary artery disease. Am J Med. 2009;122:387–391.

    Article  PubMed  Google Scholar 

  2. Weidner W, MacAlpin R, Hanafee W, Kattus A. Percutaneous transaxillary selective coronary angiography. Radiology. 1965;85:652–657.

    PubMed  CAS  Google Scholar 

  3. Selinger H. Selective coronary cine-angiography. W V Med J. 1966; 62:336–337.

    PubMed  CAS  Google Scholar 

  4. Spellberg RD, Unger I. The percutaneous femoral artery approach to selective coronary arteriography. Circulation. 1967;36:730–733.

    Article  PubMed  CAS  Google Scholar 

  5. Banerjee S, Crook AM, Dawson JR, Timmis AD, Hemingway H. Magnitude and consequences of error in coronary angiography interpretation (the ACRE study). Am J Cardiol. 2000;85:309–314.

    Article  PubMed  CAS  Google Scholar 

  6. Goldberg RK, Kleiman NS, Minor ST, Abukhalil J, Raizner AE. Comparison of quantitative coronary angiography to visual estimates of lesion severity pre and post PTCA. Am Heart J. 1990;119:178–184.

    Article  PubMed  CAS  Google Scholar 

  7. Herrington DM, Siebes M, Walford GD. Sources of error in quantitative coronary angiography. Cathet Cardiovasc Diagn. 1993;29:314–321.

    Article  PubMed  CAS  Google Scholar 

  8. Nissen SE, Gurley JC. Application of intravascular ultrasound for detection and quantitation of coronary atherosclerosis. Int J Card Imaging. 1991;6:165–177.

    Article  PubMed  CAS  Google Scholar 

  9. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995;92:2333–2342.

    Article  PubMed  CAS  Google Scholar 

  10. Yamashita T, Colombo A, Tobis JM. Limitations of coronary angiography compared with intravascular ultrasound: implications for coronary interventions. Prog Cardiovasc Dis. 1999;42:91–138.

    Article  PubMed  CAS  Google Scholar 

  11. Arnett EN, Isner JM, Redwood DR, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med. 1979;91:350–356.

    PubMed  CAS  Google Scholar 

  12. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  13. Stiel GM, Stiel LS, Schofer J, Donath K, Mathey DG. Impact of compensatory enlargement of atherosclerotic coronary arteries on angiographic assessment of coronary artery disease. Circulation. 1989;80:1603–1609.

    Article  PubMed  CAS  Google Scholar 

  14. Macieira-Coelho E, Cantinho G, da Costa BB, et al. Minimal residual coronary obstructions in patients who suffered a first myocardial infarction. A prospective study comparing coronary angiography and exercise thallium scintigraphy. Clin Cardiol. 1993;16:879–82.

    Article  PubMed  CAS  Google Scholar 

  15. Kennedy JW, Baxley WA, Bunnel IL, et al. Mortality related to cardiac catheterization and angiography. Cathet Cardiovasc Diagn. 1982;8:323–340.

    Article  PubMed  CAS  Google Scholar 

  16. Noto TJ Jr, Johnson LW, Krone R, et al. Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Cathet Cardiovasc Diagn. 1991;24:75–83.

    Article  PubMed  Google Scholar 

  17. Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol. 1999;33:1756–1824.

    Article  PubMed  CAS  Google Scholar 

  18. Heuser RR. Outpatient coronary angiography: indications, safety, and complication rates. Herz. 1998;23:21–26.

    Article  PubMed  CAS  Google Scholar 

  19. Ammann P, Brunner-La Rocca HP, Angehrn W, Roelli H, Sagmeister M, Rickli H. Procedural complications following diagnostic coronary angiography are related to the operator’s experience and the catheter size. Catheter Cardiovasc Interv. 2003;59:13–18.

    Article  PubMed  Google Scholar 

  20. deFilippi CR, Rosanio S, Tocchi M, et al. Randomized comparison of a strategy of predischarge coronary angiography versus exercise testing in low-risk patients in a chest pain unit: in-hospital and long-term outcomes. J Am Coll Cardiol. 2001;37:2042–2049.

    Article  PubMed  CAS  Google Scholar 

  21. Wyer PC. Predischarge coronary angiography was better than exercise testing for reducing hospital use after low-risk chest pain. ACP J Club. 2002;136:8.

    PubMed  Google Scholar 

  22. Gandelman G, Bodenheimer MM. Screening coronary arteriography in the primary prevention of coronary artery disease. Heart Dis. 2003;5:335–344.

    Article  PubMed  Google Scholar 

  23. Patel MR, Dehmer GJ, Hirshfeld JW, Smith PK, Spertus JA. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: a report by the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2009;53:530–553.

    Article  PubMed  Google Scholar 

  24. Fazel P, Peterman MA, Schussler JM. Three-year outcomes and cost analysis in patients receiving 64-slice computed tomographic coronary angiography for chest pain. Am J Cardiol. 2009;104:498–500.

    Article  PubMed  Google Scholar 

  25. Stein PD, Yaekoub AY, Matta F, Sostman HD. 64-slice CT for diagnosis of coronary artery disease: a systematic review. Am J Med. 2008;121:715–725.

    Article  PubMed  Google Scholar 

  26. Mowatt G, Cook JA, Hillis GS, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart. 2008;94:1386–1393.

    Article  PubMed  CAS  Google Scholar 

  27. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–2144.

    Article  PubMed  Google Scholar 

  28. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–1732.

    Article  PubMed  Google Scholar 

  29. Otsuka M, Sugahara S, Umeda K, et al. Utility of multislice computed tomography as a strategic tool for complex percutaneous coronary intervention. Int J Cardiovasc Imaging. 2008;24:201–210.

    Article  PubMed  Google Scholar 

  30. Van Mieghem CA, Thury A, Meijboom WB, et al. Detection and characterization of coronary bifurcation lesions with 64-slice computed tomography coronary angiography. Eur Heart J. 2007;28:1968–1976.

    Article  PubMed  Google Scholar 

  31. Rieber J, Sheth TN, Mooyaart EA, et al. Assessment of the presence and extent of coronary collateralization by coronary computed tomographic angiography in patients with total occlusions. Int J Cardiovasc Imaging. 2009;25:331–337.

    Article  PubMed  Google Scholar 

  32. Van Mieghem CA, van der Ent M, de Feyter PJ. Percutaneous coronary intervention for chronic total occlusions: value of preprocedural multislice CT guidance. Heart. 2007;93:1492.

    Article  PubMed  Google Scholar 

  33. Mollet NR, Hoye A, Lemos PA, et al. Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol. 2005;95:240–243.

    Article  PubMed  Google Scholar 

  34. Curtis MJ, Traboulsi M, Knudtson ML, Lester WM. Left main coronary artery dissection during cardiac catheterization. Can J Cardiol. 1992;8:725–728.

    PubMed  CAS  Google Scholar 

  35. Devlin G, Lazzam L, Schwartz L. Mortality related to diagnostic cardiac catheterization. The importance of left main coronary disease and catheter induced trauma. Int J Card Imaging. 1997;13:379–384. discussion 85–86.

    Article  PubMed  CAS  Google Scholar 

  36. Andreini D, Pontone G, Bartorelli AL, et al. Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography versus invasive coronary angiography versus intravascular ultrasound for evaluation of in-stent restenosis. Am J Cardiol. 2009;103:1349-1358.

    Article  PubMed  Google Scholar 

  37. Wijpkema JS, Tio RA, Zijlstra F. Quantification of coronary lesions by 64-slice computed tomography compared with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2006;47:891. author reply-2.

    Article  PubMed  Google Scholar 

  38. Hammer-Hansen S, Kofoed KF, Kelbaek H, et al. Volumetric evaluation of coronary plaque in patients presenting with acute myocardial infarction or stable angina pectoris-a multislice computerized tomography study. Am Heart J. 2009;157:481–487.

    Article  PubMed  Google Scholar 

  39. Kunita E, Fujii T, Urabe Y, et al. Coronary plaque stabilization followed by Color Code Plaque(TM) analysis with 64-slice multidetector row computed tomography. Circ J. 2009;73(4):772–775.

    Article  PubMed  Google Scholar 

  40. Kunimasa T, Sato Y, Sugi K, Moroi M. Evaluation by multislice computed tomography of atherosclerotic coronary artery plaques in non-culprit, remote coronary arteries of patients with acute coronary syndrome. Circ J. 2005;69:1346–1351.

    Article  PubMed  Google Scholar 

  41. Inoue F, Sato Y, Matsumoto N, Tani S, Uchiyama T. Evaluation of plaque texture by means of multislice computed tomography in patients with acute coronary syndrome and stable angina. Circ J. 2004;68:840-844.

    Article  PubMed  Google Scholar 

  42. Tanaka M, Tomiyasu KI, Fukui M, et al. Evaluation of characteristics and degree of remodeling in coronary atherosclerotic lesions by 64-detector multislice computed tomography (MSCT). Atherosclerosis. 2009;203(2):436–441.

    Article  PubMed  CAS  Google Scholar 

  43. Funabashi N, Asano M, Komuro I. Non-calcified plaques of coronary arteries with obvious outward remodeling demonstrated by multislice computed tomography. Int J Cardiol. 2006;109:264.

    Article  PubMed  Google Scholar 

  44. Dehghani P, Marcuzzi D, Cheema AN. Use of multislice CT coronary angiography to assess degree of left main stent overhang into the aorta. Heart. 2009;95:708.

    Article  PubMed  CAS  Google Scholar 

  45. Nakamura K, Funabashi N, Uehara M, et al. Impairment factors for evaluating the patency of drug-eluting stents and bare metal stents in coronary arteries by 64-slice computed tomography versus conventional coronary angiography. Int J Cardiol. 2008;130:349–356.

    Article  PubMed  Google Scholar 

  46. Hecht HS, Zaric M, Jelnin V, Lubarsky L, Prakash M, Roubin G. Usefulness of 64-detector computed tomographic angiography for diagnosing in-stent restenosis in native coronary arteries. Am J Cardiol. 2008;101:820–824.

    Article  PubMed  Google Scholar 

  47. Jabara R, Chronos N, Klein L, et al. Comparison of multidetector 64-slice computed tomographic angiography to coronary angiography to assess the patency of coronary artery bypass grafts. Am J Cardiol. 2007;99:1529–1534.

    Article  PubMed  Google Scholar 

  48. Chiurlia E, Menozzi M, Ratti C, Romagnoli R, Modena MG. Follow-up of coronary artery bypass graft patency by multislice computed tomography. Am J Cardiol. 2005;95:1094–1097.

    Article  PubMed  Google Scholar 

  49. Meyer TS, Martinoff S, Hadamitzky M, et al. Improved noninvasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49:946–950.

    Article  PubMed  Google Scholar 

  50. Gao C, Liu Z, Li B, et al. Comparison of graft patency for off-pump and conventional coronary arterial bypass grafting using 64-slice multidetector spiral computed tomography angiography. Interact Cardiovasc Thorac Surg. 2009;8:325–329.

    Article  PubMed  Google Scholar 

  51. Marini D, Agnoletti G, Brunelle F, Sidi D, Bonnet D, Ou P. Cardiac CT angiography after coronary artery surgery in children using 64-slice CT scan. Eur J Radiol. 2009;71(3):492–497.

    Article  PubMed  Google Scholar 

  52. Schussler JM, White CH, Fontes MA, Master SA, Hamman BL. Spyder proximal coronary vein graft patency over time: the SPPOT study. Heart Surg Forum. 2009;12:E49–E53.

    Article  PubMed  Google Scholar 

  53. Schachner T, Feuchtner GM, Bonatti J, et al. Evaluation of robotic coronary surgery with intraoperative graft angiography and postoperative multislice computed tomography. Ann Thorac Surg. 2007;83:1361–1367.

    Article  PubMed  Google Scholar 

  54. Peterman MA, Hamman BL, Schussler JM. 64-Slice CT angiography of saphenous vein graft anastomoses fashioned with interrupted nitinol clips. Ann Thorac Surg. 2007;83:1204.

    Article  PubMed  Google Scholar 

  55. Schussler JM, Hamman BL. Multislice cardiac computed tomography of symmetry bypass connector. Heart. 2004;90:1480.

    Article  PubMed  CAS  Google Scholar 

  56. Malagutti P, Nieman K, Meijboom WB, et al. Use of 64-slice CT in symptomatic patients after coronary bypass surgery: evaluation of grafts and coronary arteries. Eur Heart J. 2007;28:1879–1885.

    Article  PubMed  Google Scholar 

  57. Nazeri I, Shahabi P, Tehrai M, Sharif-Kashani B, Nazeri A. Assessment of patients after coronary artery bypass grafting using 64-slice computed tomography. Am J Cardiol. 2009;103:667–673.

    Article  PubMed  Google Scholar 

  58. Gilard M, Cornily JC, Pennec PY, et al. Accuracy of multislice computed tomography in the preoperative assessment of coronary disease in patients with aortic valve stenosis. J Am Coll Cardiol. 2006;47:2020–2024.

    Article  PubMed  Google Scholar 

  59. Scheffel H, Leschka S, Plass A, et al. Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol. 2007;100:701–706.

    Article  PubMed  Google Scholar 

  60. Weinberg L, Spanger MC, Harley I, Story DA, Hall A. Multislice computed tomography coronary angiography: risk stratification of patients in the perioperative period. Anaesth Intensive Care. 2008;36:308–323.

    PubMed  CAS  Google Scholar 

  61. Berbarie RF, Aslam MK, Kuiper JJ, et al. Preoperative exclusion of significant coronary artery disease by 64-slice CT coronary angiography in a patient with a left atrial myxoma. Proc (Bayl Univ Med Cent). 2006;19:121.

    Google Scholar 

  62. Tandon A, Allison RB, Grayburn PA, Hamman BL, Schussler JM. Preoperative visualization of a muscular ventricular septal defect by 64-slice cardiac computed tomography. Proc (Bayl Univ Med Cent). 2008;21:281.

    Google Scholar 

  63. Gibbs WN, Hamman BL, Roberts WC, Schussler JM. Diagnosis of congenital unicuspid aortic valve by 64-slice cardiac computed tomography. Proc (Bayl Univ Med Cent). 2008;21:139.

    Google Scholar 

  64. Berbarie RF, Dockery WD, Johnson KB, Rosenthal RL, Stoler RC, Schussler JM. Use of multislice computed tomographic coronary angiography for the diagnosis of anomalous coronary arteries. Am J Cardiol. 2006;98:402–406.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Schussler MD, FACC, FSCAI, FSCCT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Schussler, J.M. (2010). An Interventionalist’s Perspective: Diagnosis of Cardiovascular Disease. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-650-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-650-2_23

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-649-6

  • Online ISBN: 978-1-84882-650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics