Skip to main content

Oligonucleotide Therapeutics to Treat Dyslipoproteinemia and Atherosclerosis

  • Chapter
  • First Online:
  • 929 Accesses

Abstract

Oligonucleotides, whether synthesized or generated by selective enrichment strategies, are long-established research tools. A decade ago, new production and in vivo delivery techniques saw them emerge as a novel class of molecular therapeutics, and this advancement has evolved rapidly, driven by noteworthy discoveries that enlightened our understanding of gene function in disease pathogenesis. RNA aptamers and short interfering RNA (siRNA) are at the forefront of clinical development, but other technologies offer additional promise. Here, we focus on three distinct oligonucleotide therapies, which nevertheless have potential to treat dyslipoproteinemias and atherosclerosis: RNA interference, exon skipping, and oligonucleotide-directed gene editing. The first two are now recognized examples of antisense oligonucleotide technology for manipulating gene expression, while targeted gene editing is an unexpected development, uniquely suited for the safe introduction of small, permanent changes into a cell’s genome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Burnett JR, Hooper AJ. Common and rare gene variants affecting plasma LDL cholesterol. Clin Biochem Rev. 2008;29:11-26.

    PubMed  Google Scholar 

  2. Chester A, Scott J, Anant S, Navaratnam N. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim Biophys Acta. 2000;1494:1-13.

    CAS  PubMed  Google Scholar 

  3. Olofsson SO, Asp L, Boren J. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr Opin Lipidol. 1999;10:341-346.

    Article  CAS  PubMed  Google Scholar 

  4. Owen JS, Mulcahy JV. ATP-binding cassette A1 protein and HDL homeostasis. Atheroscler Suppl. 2002;3:13-22.

    Article  Google Scholar 

  5. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006;116:3090-3100.

    Article  CAS  PubMed  Google Scholar 

  6. Rye KA, Barter PJ. Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2004;24:421-428.

    Article  CAS  PubMed  Google Scholar 

  7. Lusis AJ. Atherosclerosis. Nature. 2000;407:233-241.

    Article  CAS  PubMed  Google Scholar 

  8. Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem. 2002;277:17377-17380.

    Article  CAS  PubMed  Google Scholar 

  9. Willer CJ, Sanna S, Jackson AU, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161-169.

    Article  CAS  PubMed  Google Scholar 

  10. Schonfeld G. Familial hypobetalipoproteinemia: a review. J Lipid Res. 2003;44:878-883.

    Article  CAS  PubMed  Google Scholar 

  11. Burnett JR, Shan J, Miskie BA, et al. A novel nontruncating APOB gene mutation, R463W, causes familial hypobetalipoproteinemia. J Biol Chem. 2003;278:13442-12352.

    Article  CAS  PubMed  Google Scholar 

  12. Tarugi P, Lonardo A, Ballarini G, et al. A study of fatty liver disease and plasma lipoproteins in a kindred with familial hypobetalipoproteinemia due to a novel truncated form of apolipoprotein B (APO B-54.5). J Hepatol. 2000;33:361-370.

    Article  CAS  PubMed  Google Scholar 

  13. Zamel R, Khan R, Pollex RL, Hegele RA. Abetalipoproteinemia: two case reports and literature review. Orphanet J Rare Dis. 2008;3:1.

    Article  Google Scholar 

  14. Ng DS, Leiter LA, Vezina C, Connelly PW, Hegele RA. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. J Clin Invest. 1994;93:223-229.

    Article  CAS  PubMed  Google Scholar 

  15. Dastani Z, Dangoisse C, Boucher B, et al. A novel nonsense apolipoprotein A-I mutation (apoA-I(E136X)) causes low HDL cholesterol in French Canadians. Atherosclerosis. 2006;185:127-136.

    Article  CAS  PubMed  Google Scholar 

  16. Franceschini G, Sirtori CR, Capurso A, Weisgraber KH, Mahley RW. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest. 1980;66:892-900.

    Article  CAS  PubMed  Google Scholar 

  17. Calabresi L, Sirtori CR, Paoletti R, Franceschini G. Recombinant apolipoprotein A-IMilano for the treatment of cardiovascular diseases. Curr Atheroscler Rep. 2006;8:163-167.

    Article  CAS  PubMed  Google Scholar 

  18. Favari E, Gomaraschi M, Zanotti I, et al. A unique protease-sensitive high density lipoprotein particle containing the apolipoprotein A-I(Milano) dimer effectively promotes ATP-binding cassette A1-mediated cell cholesterol efflux. J Biol Chem. 2007;282:5125-5132.

    Article  CAS  PubMed  Google Scholar 

  19. Disterer P, Osman E, Owen JS. Gene therapy for apolipoprotein A-I and HDL-the ultimate treatment for atherosclerosis? In: Abraham D, Handler C, Dashwood M, Coghlan G, eds. Vascular Complications in Human Disease. Mechanisms and Consequences. London: Springer; 2007.

    Google Scholar 

  20. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292-2300.

    Article  CAS  PubMed  Google Scholar 

  21. Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet. 2000;1:507-537.

    Article  CAS  PubMed  Google Scholar 

  22. Mahley RW, Huang Y, Rall SC Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia): questions, quandaries, and paradoxes. J Lipid Res. 1999;40:1933-1949.

    CAS  PubMed  Google Scholar 

  23. Fazekas F, Enzinger C, Ropele S, Schmidt H, Schmidt R, Strasser-Fuchs S. The impact of our genes: consequences of the apolipoprotein E polymorphism in Alzheimer disease and multiple sclerosis. J Neurol Sci. 2006;245:35-39.

    Article  CAS  PubMed  Google Scholar 

  24. Folsom AR, Peacock JM, Boerwinkle E. Variation in PCSK9, low LDL cholesterol, and risk of peripheral arterial disease. Atherosclerosis. 2009;202:211-215.

    Article  PubMed  Google Scholar 

  25. Lambert G, Charlton F, Rye KA, Piper DE. Molecular basis of PCSK9 function. Atherosclerosis. 2009;2003:1-7.

    Article  PubMed  Google Scholar 

  26. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161-165.

    Article  CAS  PubMed  Google Scholar 

  27. Wilson C, Keefe AD. Building oligonucleotide therapeutics using non-natural chemistries. Curr Opin Chem Biol. 2006;10:607-614.

    Article  CAS  PubMed  Google Scholar 

  28. Keefe AD, Schaub RG. Aptamers as candidate therapeutics for cardiovascular indications. Curr Opin Pharmacol. 2008;8:147-152.

    Article  CAS  PubMed  Google Scholar 

  29. Bhindi R, Fahmy RG, Lowe HC, et al. Brothers in arms: DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies. Am J Pathol. 2007;171:1079-1088.

    Article  CAS  PubMed  Google Scholar 

  30. Novina CD, Sharp PA. The RNAi revolution. Nature. 2004;430:161-164.

    Article  CAS  PubMed  Google Scholar 

  31. Aartsma-Rus A, van Ommen GJ. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA. 2007;13:1609-1624.

    Article  CAS  PubMed  Google Scholar 

  32. Parekh-Olmedo H, Kmiec EB. Progress and prospects: targeted gene alteration (TGA). Gene Ther. 2007;14:1675-1680.

    Article  CAS  PubMed  Google Scholar 

  33. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173-178.

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441:111-114.

    Article  CAS  PubMed  Google Scholar 

  35. Frank-Kamenetsky M, Grefhorst A, Anderson NN, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105:11915-11920.

    Article  CAS  PubMed  Google Scholar 

  36. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3:285-298.

    Article  CAS  PubMed  Google Scholar 

  37. Krämer A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem. 1996;65:367-409.

    Article  PubMed  Google Scholar 

  38. Goyenvalle A, Vulin A, Fougerousse F, et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science. 2004;306:1796-1799.

    Article  CAS  PubMed  Google Scholar 

  39. van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357:2677-2686.

    Article  PubMed  Google Scholar 

  40. Khoo B, Roca X, Chew SL, Krainer AR. Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB. BMC Mol Biol. 2007;8:3.

    Article  PubMed  Google Scholar 

  41. Dekker M, Brouwers C, te Riele H. Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res. 2003;31:e27.

    Article  PubMed  Google Scholar 

  42. Yoon K, Cole-Strauss A, Kmiec EB. Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA-DNA oligonucleotide. Proc Natl Acad Sci U S A. 1996;93:2071-2076.

    Article  CAS  PubMed  Google Scholar 

  43. Cole-Strauss A, Yoon K, Xiang Y, et al. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. 1996;273:1386-1389.

    Article  CAS  PubMed  Google Scholar 

  44. Tagalakis AD, Graham IR, Riddell DR, Dickson JG, Owen JS. Gene correction of the apolipoprotein (Apo) E2 phenotype to wild-type ApoE3 by in situ chimeraplasty. J Biol Chem. 2001;276:13226-13230.

    Article  CAS  PubMed  Google Scholar 

  45. Tagalakis AD, Dickson G, Owen JS, Simons PJ. Gene correction of human apolipoprotein (apo) E4 to apoE3 in vitro using synthetic RNA/DNA oligonucleotides (chimeraplasts). J Mol Neurosci. 2005;25:95-104.

    Article  CAS  PubMed  Google Scholar 

  46. Manzano A, Mohri Z, Sperber G, et al. Failure to generate atheroprotective apolipoprotein AI phenotypes using synthetic RNA/DNA oligonucleotides (chimeraplasts). J Gene Med. 2003;5:795-802.

    Article  CAS  PubMed  Google Scholar 

  47. van der Steege G, Schuilenga-Hut PH, Buys CH, Scheffer H, Pas HH, Jonkman MF. Persistent failures in gene repair. Nat Biotechnol. 2001;19:305-306.

    Article  PubMed  Google Scholar 

  48. Taubes G. The strange case of chimeraplasty. Science. 2002;298:2116-2120.

    Article  CAS  PubMed  Google Scholar 

  49. Ferrara L, Kmiec EB. Targeted gene repair activates Chk1 and Chk2 and stalls replication in corrected cells. DNA Repair (Amst). 2006;5:422-431.

    Article  CAS  Google Scholar 

  50. Olsen PA, Randol M, Krauss S. Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides. Gene Ther. 2005;12:546-551.

    Article  CAS  PubMed  Google Scholar 

  51. Disterer P, Simons JP, Owen JS. Validation of oligonucleotide-mediated gene editing. Gene Ther. 2009;16:824-826.

    Article  Google Scholar 

  52. Papaioannou I, Disterer P, Owen JS. Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing the mismatch repair protein, MSH2, enhance replication of corrected cells following gene editing. J Gene Med. 2009;11:267-274.

    Article  Google Scholar 

  53. Radecke S, Radecke F, Peter I, Schwarz K. Physical incorporation of a single-stranded oligodeoxynucleotide during targeted repair of a human chromosomal locus. J Gene Med. 2006;8:217-228.

    Article  CAS  PubMed  Google Scholar 

  54. Morozov V, Wawrousek EF. Single-strand DNA-mediated targeted mutagenesis of genomic DNA in early mouse embryos is stimulated by Rad51/54 and by Ku70/86 inhibition. Gene Ther. 2007;15:468-472.

    Article  PubMed  Google Scholar 

  55. Olsen PA, Randøl M, Luna L, Brown T, Krauss S. Genomic sequence correction by single-stranded DNA oligonucleotides: role of DNA synthesis and chemical modifications of the oligonucleotide ends. J Gene Med. 2005;7:1534-1544.

    Article  CAS  PubMed  Google Scholar 

  56. Igoucheva O, Alexeev V, Scharer O, Yoon K. Involvement of ERCC1/XPF and XPG in oligodeoxynucleotide-directed gene modification. Oligonucleotides. 2006;16:94-104.

    Article  CAS  PubMed  Google Scholar 

  57. Pierce EA, Liu Q, Igoucheva O, et al. Oligonucleotide-directed single-base DNA alterations in mouse embryonic stem cells. Gene Ther. 2003;10:24-33.

    Article  CAS  PubMed  Google Scholar 

  58. Aarts M, Dekker M, de Vries S, van der Wal A, te Riele H. Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells. Nucleic Acids Res. 2006;34:e147.

    Article  PubMed  Google Scholar 

  59. Carroll D. Progress and prospects: Zinc-finger nucleases as gene therapy agents. Gene Ther.. 2008;15:1463-1468.

    Article  CAS  PubMed  Google Scholar 

  60. Cathomen T, Joung JK. Zinc-finger nucleases: the next generation. Mol Ther. 2008;16:1200-1207.

    Article  CAS  PubMed  Google Scholar 

  61. Moehle EA, Rock JM, Lee YL, et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A. 2007;104:3055-3060.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Papaioannou was supported by a British Heart Foundation project grant (PG/06/015/20305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Papaioannou, I., Owen, J.S. (2009). Oligonucleotide Therapeutics to Treat Dyslipoproteinemia and Atherosclerosis. In: Abraham, D., Clive, H., Dashwood, M., Coghlan, G. (eds) Advances in Vascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84882-637-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-637-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-636-6

  • Online ISBN: 978-1-84882-637-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics