Skip to main content

Modeling of Open Channel Flow

  • Chapter
Modeling and Control of Hydrosystems

Abstract

In this chapter, we present the classical model used to describe open channel hydraulics: the Saint-Venant equations. For completeness, the equations are rigorously derived in Appendix A. We first study some of their mathematical properties, such as the characteristic form. We briefly describe some numerical methods of resolution, and then consider the linearized equations that are valid for small variations around equilibrium regimes. These equations form the basis of all the methods developed in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott M (1966) An introduction to the method of characteristics. Elsevier, New York

    Google Scholar 

  2. Abbott MB (1979) Computational hydraulics. Elements of the theory of free surface flows. Pitman Publishing, London, 324 p

    MATH  Google Scholar 

  3. Bardos C, Le Roux A, Nedelec J (1979) First order quasilinear equations with boundary conditions. Commun in Part Diff Eqs 4(9):1017–1034

    Article  MATH  Google Scholar 

  4. Boussinesq VJ (1877) Essai sur la théorie des eaux courantes, vol 23. Mémoires présentés par divers savants à l’Académie des Sciences, Paris

    Google Scholar 

  5. Chow V (1988) Open-channel hydraulics. McGraw-Hill, New York, 680 p

    Google Scholar 

  6. Cunge J, Holly F, Verwey A (1980) Practical aspects of computational river hydraulics. Pitman Advanced Publishing Program

    Google Scholar 

  7. Evans L (1998) Partial differential equations, Graduate studies in mathematics, vol 19. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  8. Favre H (1935) Etude théorique et expérimentale des ondes de translation dans les canaux découverts. Dunod, Paris

    Google Scholar 

  9. de Halleux J, Prieur C, Coron JM, d’Andréa Novel B, Bastin G (2003) Boundary feedback control in networks of open-channels. Automatica 39:1365–1376

    Article  MATH  Google Scholar 

  10. Krstic M, Smyshlyaev A (2008) Boundary control of PDEs: A course on backstepping designs. SIAM

    Google Scholar 

  11. Litrico X, Fromion V (2004) Frequency modeling of open channel flow. J Hydraul Eng 130(8):806–815

    Article  Google Scholar 

  12. Miller W, Cunge J (1975) Simplified equations of unsteady flow, in Mahmood K, Yevjevich V (eds.), Unsteady fl ow in open channels. Water Resources Publications, Fort Collins, CO, pp 183–257

    Google Scholar 

  13. Mohapatra PK, Chaudhry MH (2004) Numerical solution of Boussinesq equations to simulate dam-break flows. J Hydraul Eng 130(2):156–159

    Article  Google Scholar 

  14. Preissmann A (1961) Propagation des intumescences dans les canaux et rivières. In: 1er Congrès de l’Association Française de Calcul, Grenoble, France, pp 433–442

    Google Scholar 

  15. Barré de Saint-Venant A (1871) Théorie du mouvement non-permanent des eaux avec application aux crues des rivières et à l’introduction des marées dans leur lit. Comptes rendus Acad Sci Paris 73:148–154, 237–240

    Google Scholar 

  16. Samuels P, Skeels C (1990) Stability limits for Preissmann’s scheme. J Hydraul Eng 116(8):997–1012

    Article  Google Scholar 

  17. Schuurmans J (1997) Control of water levels in open-channels. PhD thesis, ISBN 90-9010995-1, Delft University of Technology

    Google Scholar 

  18. Soares-Frazao S, Zech Y (2002) Undular bores and secondary waves - experiments and hybrid finite-volume modelling. J Hydr Res 40(1):33–43

    Google Scholar 

  19. Strub I, Bayen A (2006) Weak formulation of the boundary condition for scalar conservation laws: an application to highway traffic modelling. Int J Robust Nonlin Contr 16(16):733–748

    Article  MATH  MathSciNet  Google Scholar 

  20. Sturm T (2001) Open-channel hydraulics. McGraw-Hill, New York

    Google Scholar 

  21. Treske A (1994) Undular bores (Favre waves) in open channels – experimental studies. J Hydr Res 32(3):355–370

    Article  Google Scholar 

  22. Venutelli M (2002) Stability and accuracy of weighted four-point implicit finite difference schemes for open channel flow. J Hydraul Eng 128(3):281–288

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2009). Modeling of Open Channel Flow. In: Modeling and Control of Hydrosystems. Springer, London. https://doi.org/10.1007/978-1-84882-624-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-624-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-623-6

  • Online ISBN: 978-1-84882-624-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics