Advertisement

Abstract

The primary quantities of an actuator depend on

1. the actuator principle or class (e.g. piezoceramic stack actuator, solenoid actuator, hydraulic cylinder);

2. a set of non-geometrical design variables (e.g. the kind of active material used, the amount of pre-strain of a Shape-Memory wire);

3. a set of geometrical variables;

4. the actuator input quantity;

5. the external load.

Keywords

Input Quantity Actuator Force Output Quantity Reference Length Hydraulic Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buckingham E (1914) On physically similar systems: Illustrations of the use of dimensional equations. Phys Rev 4:345–376CrossRefGoogle Scholar
  2. 2.
    Holman J (1980) Thermodynamics, 3rd edn. McGraw-Hill, KogakushaGoogle Scholar
  3. 3.
    Hu T, Lin Z (2001) Control Systems with Actuator Saturation: Analysis and Design. BirkhauserGoogle Scholar
  4. 4.
    Huber J (1998) Ferroelectrics: Models and applications. PhD thesis, University of CambridgeGoogle Scholar
  5. 5.
    Huber JE, Fleck NA, Ashby MF (1997) The selection of mechanical actuators based on performance indices. Proc R Soc Lond A 453:2185–2205CrossRefGoogle Scholar
  6. 6.
    Jack A, Mecrow B (1990) Methods for magnetically nonlinear problems involving significant hysteresis and eddy currents. IEEE Transactions on Magnetics 26(2):424–429, DOI 10.1109/20.106344CrossRefGoogle Scholar
  7. 7.
    Jin J (1993) The finite element method in electromagnetics. Wiley New YorkzbMATHGoogle Scholar
  8. 8.
    Kailath T (1980) Linear systems. Prentice-HallGoogle Scholar
  9. 9.
    Khalil H (2002) Nonlinear systems. Prentice Hall Upper Saddle River, NJzbMATHGoogle Scholar
  10. 10.
    Kuo B (1992) Digital Control Systems. Oxford university pressGoogle Scholar
  11. 11.
    Kuribayashi K (1993) Criteria for the evaluation of new actuators as energy converters. Advanced robotics 7(4):289–307CrossRefGoogle Scholar
  12. 12.
    Kyriakides E, Heydt G, Vittal V (2005) Online parameter estimation of round rotor synchronous generators including magnetic saturation. IEEE Transactions on Energy Conversion 20(3):529–537, DOI 10.1109/TEC.2005.847951CrossRefGoogle Scholar
  13. 13.
    Levi E (1997) Modelling of magnetic saturation in smooth air-gap synchronous machines. IEEE Transactions on Energy Conversion 12(2):151–156, DOI 10.1109/60.629697CrossRefGoogle Scholar
  14. 14.
    Nandi S (2004) A detailed model of induction machines with saturation extendable for fault analysis. IEEE Transactions on Industry Applications 40(5):1302–1309CrossRefGoogle Scholar
  15. 15.
    Novotnak R, Chiasson J, Bodson M (1999) High-performance motion control of an induction motor with magneticsaturation. IEEE Transactions on Control Systems Technology 7(3):315–327CrossRefGoogle Scholar
  16. 16.
    Reddy J (1993) An introduction to the finite element method. McGraw-Hill SingaporeGoogle Scholar
  17. 17.
    Sullivan C, Kao C, Acker B, Sanders S (1996) Control systems for induction machines with magnetic saturation. IEEE Transactions on Control Industrial Electronics 43(1):142–152CrossRefGoogle Scholar
  18. 18.
    Taylor E (1974) Dimensional analysis for engineers. Clarendon Press OxfordGoogle Scholar
  19. 19.
    Zienkiewics O, Taylor R, Nithiarasu P, Zhu J (2005) The Finite Element Method. Elsevier/Butterworth-HeinemannGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Personalised recommendations