An actuator can be defined [16, 15] as an energy converter which transforms energy from an external source into mechanical energy in a controllable way. The actuator input quantities depend on the type of energy used and can be chosen among all the quantities involved in the energy conversion from the energy source to the output mechanical quantities. For electromagnetic, piezoelectric and magnetostrictive actuators the input quantities can be the current, the charge or the voltage; for fluid power actuators the fluid pressure or the flow; for shape memory alloys and thermal expansion actuators the temperature. The output quantities are of mechanical nature. We will distinguish among (primary) output quantities (actuator force and stroke), and (derived) output quantities, which can be computed on the basis of the primary quantities. The most used derived output quantities are the actuator work and the actuator power.


Shape Memory Alloy Piezoelectric Actuator Magnetic Circuit Hydraulic Actuator Ultrasonic Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ando Y, Ikehara T, Matsumoto S (2002) Design, fabrication and testing of new comb actuators realizing three-dimensional continuous motions. Sensors and Actuators A: Physical 97-98:579–586CrossRefGoogle Scholar
  2. 2.
    Auricchio F (2005) Shape memory alloys: applications, micromechanics, macromodeling and numerical simulations. PhD thesis, University of California at BerkeleyGoogle Scholar
  3. 3.
    Banks HT, Smith RC, Wang Y (1996) Smart Material Structures Modeling, Estimation and Control. Wiley, New YorkzbMATHGoogle Scholar
  4. 4.
    Birman V (1997) Review of mechanics of shape memory alloy structures. Applied Mechanics Reviews 50:629–645CrossRefGoogle Scholar
  5. 5.
    Bishop RH (ed) (2002) The Mechatronics Handbook. CRC PressGoogle Scholar
  6. 6.
    Campanile LF (2007) Adaptive Structures: Engineering applications, John Wiley and Sons, chap Lightweight shape-adaptable airfoils: a new challenge for an old dream, pp 89–135Google Scholar
  7. 7.
    Chapman S (2004) Electric Machinery Fundamentals. McGraw-Hill ProfessionalGoogle Scholar
  8. 8.
    Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA Journal 40(11):2145–2187CrossRefGoogle Scholar
  9. 9.
    Culshaw B (1996) Smart Structures and Materials. Artech House Optoelectronics Library, BostonGoogle Scholar
  10. 10.
    Curie J, Curie P (1880) Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société Minéralogique de France 3:90–93Google Scholar
  11. 11.
    Duerig T, Melton K, Stockel D, Wayman C (eds) (1990) Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, LondonGoogle Scholar
  12. 12.
    Fremond M, Miyazaki S (1996) Shape Memory Alloys. Springer-Verlag, New YorkGoogle Scholar
  13. 13.
    Funakubo H (ed) (1987) Shape memory alloys. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  14. 14.
    Giurgiutiu V, Rogers CA (1996) Energy based comparision of solid state induced strain actuators. Journal of intelligent material systems and structures 7Google Scholar
  15. 15.
    Gomis-Bellmunt O (2007) Design, modeling, identification and control of mechatronic systems. PhD thesis, Technical University of CataloniaGoogle Scholar
  16. 16.
    Gomis-Bellmunt O, Galceran-Arellano S, Sudrià-Andreu A, Montesinos-Miracle D, Campanile LF (2007) Linear electromagnetic actuator modeling for optimization of mechatronic and adaptronic systems. Mechatronics 17:153–163CrossRefGoogle Scholar
  17. 17.
    Grunwald A, Olabi A (2008) Design of a magnetostrictive (ms) actuator. Sensors and Actuators A: Physical 144:161–175CrossRefGoogle Scholar
  18. 18.
    Huber JE, Fleck NA, Ashby MF (1997) The selection of mechanical actuators based on performance indices. Proc R Soc Lond A 453:2185–2205CrossRefGoogle Scholar
  19. 19.
    IEEE Ultrasonics F, Society FC (1987) IEEE Standards on Piezoelectricity. IEEEGoogle Scholar
  20. 20.
    Jänker P, Martin W (1993) Performance and characteristics of actuator material. In: Proc. of the 4th International Conference on Adaptive Structures, Cologne, Germany, pp 126–138Google Scholar
  21. 21.
    Janocha H (2000) Adaptronics and Smart Structures. Springer VerlagGoogle Scholar
  22. 22.
    Krause P (1986) Analysis of Electric Machinery. McGraw-HillGoogle Scholar
  23. 23.
    Kuribayashi K (1993) Criteria for the evaluation of new actuators as energy converters. Advanced robotics 7(4):289–307CrossRefGoogle Scholar
  24. 24.
    Matsuzaki Y (1997) Smart structures research in Japan. Smart Materials and Structures 6:R1–R10CrossRefGoogle Scholar
  25. 25.
    Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science 50(5):511–678CrossRefGoogle Scholar
  26. 26.
    PI PI (2005-2006) The world of Micro- and NanopositioningGoogle Scholar
  27. 27.
    Uchino K (1997) Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic PublishersGoogle Scholar
  28. 28.
    Uchino K (2000) Ferroelectric Devices. Marcel Dekker Inc.Google Scholar
  29. 29.
    Utku S (1998) Theory of Adaptive Structures. CRC Press, New YorkGoogle Scholar
  30. 30.
    Waanders J (1991) Piezoelectric Ceramics. Properties and Applications, 1st edn. Philips Components, EindhovenGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Personalised recommendations