Skip to main content

Resource-Aware Fuzzy Logic Control of Video Streaming over IP and Wireless Networks

  • Chapter
  • First Online:
Pervasive Computing

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

Congestion control of real-time streaming a video clip or film across the Internet is vital, as network traffic volatility requires constant adjustment of the bit rate in order to reduce packet loss. Traditional solutions to congestion control are prone to delivery rate fluctuations and may respond only when packet loss has already occurred, while both fluctuations and packet loss seriously affect the end user’s appreciation of the delivered video. In this chapter, fuzzy logic control (FLC) is newly applied to control of video streaming in fixed and wireless networks. In a fixed network, by way of congestion control the encoded video bitstream’s rate is adjusted according to the available bandwidth. Compared to existing controllers, FLC’s sending rate is significantly smoother, allowing it to closely track available bandwidth at a bottleneck on the video stream’s path across a network. The chapter also shows that when multiple video streams are congestion controlled through FLC, the result is a fairer and more efficient sharing of the bandwidth capacity. Also considered is a pioneering application of FLC to wireless networks, where other resources, apart from available bandwidth, come into play. An FLC system has been designed that provides a modular solution to control of latency and energy consumption, which is important for battery-powered devices, but must be balanced against the quality of delivered video. The chapter concludes by presenting the potential of emerging type-2 fuzzy logic as a way of significantly improving the robustness of classical type-1 fuzzy logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagras, H.: Type-2 FLCs: A new generation of fuzzy controllers. IEEE Comput. Intell. 2(1), 30–43 (2007)

    Article  Google Scholar 

  2. Ghanbari, M.: Standard codecs: Image compression to advanced video coding. The Institute of Electrical Engineering Press, London, (2003)

    Google Scholar 

  3. Jammeh, E., Fleury, M., Ghanbari, M.: Fuzzy logic congestion control of transcoded video streaming without packet loss feedback. IEEE Trans. Circuits Syst. Video Technol. 18(3), 387–393 (2008)

    Article  Google Scholar 

  4. Assunção, A. A., Ghanbari, M.: A frequency domain video transcoder for dynamic bit-rate reduction of MPEG-2 bit streams. IEEE Trans. Circuits Syst. Video Technol. 8(8), 953–967 (1998)

    Article  Google Scholar 

  5. Razavi, R., Fleury, M., Ghanbari, M.: Power-constrained fuzzy logic control of video streaming over a wireless interconnect. EURASIP J. Adv. Signal Process. 14 (2008). Available online at http://www.hindawi.com/journals/asp/2008/560749.html

  6. Kalman, M., Ramanathan, P., Girod, B.: Rate-distortion optimized video streaming with multiple deadlines. Int. Conf. on Image Processing, 662–664, Singapore, Sept. (2003)

    Google Scholar 

  7. Baturone, I., Barriga, A., Sánchez-Solano, S., Jiménez, C., López, C.: Microelectronic design of fuzzy logic-based systems. CRC Press, Baton Rouge, FO, (2000)

    Google Scholar 

  8. Pitsillides A., Sekercioglu, A.: Congestion control. In W. Pedrycz and A. Vasiliakos, (eds.) Computational Intelligence in Telecommunications Networks, CRC Press, Boca Raton, FL, pp. 109–158 (2000)

    Google Scholar 

  9. Ghosh, S., Razouki, Q., Schumacher, H. J., Celmins, A.: A survey of recent advances in fuzzy logic in telecommunications networks and new challenges. IEEE Trans. Fuzzy Syst. 6(3), 443–447 (1998)

    Article  Google Scholar 

  10. Şekercioglu, A., Pitsillides, A., Vasilakos, A.: Computional intelligence in management of ATM networks: A survey of current state of research. Soft Comput. J. 5(4), 257–263 (2001)

    Article  MATH  Google Scholar 

  11. Liang, Q., Karnik, N., Mendel, J. M.: Connection admission control in ATM networks using survey-based type-2 fuzzy logic system. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 30(3), 329–339 (2000)

    Article  Google Scholar 

  12. Kazemian, H. B., Meng, L.: An adaptive control for video transmission over Bluetooth. IEEE Trans. Fuzzy Syst. 14(2), 263–274 (2006)

    Article  Google Scholar 

  13. Rossides, L., Chrysostemou, C., Pitsillides, A., Şekercioglu, A.: Overview of Fuzzy-RED in Diff-Serv networks. Soft-Ware 2002, 2–14, Coleraine, April (2002)

    Google Scholar 

  14. Wang, X., D. Ye, D., Wu, Q.: Using fuzzy logic controller to implement scalable quality adaptation for stored video in DiffServ networks. 12th Int. PacketVideo workshop. Pittsburgh, PA, April (2002)

    Google Scholar 

  15. Leone, A., Bellini, A., Guerrieri, R.: An H.261 fuzzy-controlled coder for videophone se quences. IEEE World Conference on Computational Intelligence, 244–248 June (1994)

    Google Scholar 

  16. Grant, P. M., Saw, Y.-S., Hannah., J. M.: Fuzzy rule based MPEG video rate prediction and control. Eurasip ECASP Conference, 211–214 (1997)

    Google Scholar 

  17. Liang, Q., Mendel, J. M.: MPEG VBR video traffic modeling and classification using fuzzy techniques. IEEE Trans. Fuzzy Syst. 9(1), 183–193 (2001)

    Article  Google Scholar 

  18. Shu, H., Liang, Q., Gao, J.: Wireless sensor network lifetime analysis using interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 16(2), 416–427 (2008)

    Article  Google Scholar 

  19. Liang, Q., Mendel, J. M.: Equalization of time-varying nonlinear channels using type-2 fuzzy adaptive filters. IEEE Trans. Fuzzy Syst. 8(5), 551–563 (2000)

    Article  Google Scholar 

  20. Zaddeh, L. A.: The concept of linguistic variable and its application to approximate reasoning. Inform. Sci. 8, 199–249 (1975)

    Article  Google Scholar 

  21. Mendel, J. M.: Type-2 fuzzy sets and systems: An overview. IEEE Comput. Intell. 2(1), 20–29 (2007)

    Article  MathSciNet  Google Scholar 

  22. Gorzalczany, M. B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems 21, 1–17 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. John, R., Coupland, S.: Type-2 fuzzy logic: A historical view. IEEE Comput. Intell. 2(1), 57–62 (2007)

    Article  Google Scholar 

  24. Jang, J.-S. R., Sun, C.-T., Mitzutani, E.: Neuro-fuzzy and softcomputing, Prentice Hall, Upper Saddle River, NJ, (1997)

    Google Scholar 

  25. Chun, J., Zhu, Y., Claypool, M.: FairPlayer or foulPlayer? – head to head performance of RealPlayer streaming video over UDP versus TCP. Worcester Polytechnic Institution, Worcester, MA, Tech. Rep. May (2002)

    Google Scholar 

  26. Assunção, P. A. A., Ghanbari, M.: Buffer analysis and control in CBR video transcoding. IEEE Trans. Circuits Syst. Video Technol. 10(1), 83–92 (2000)

    Article  Google Scholar 

  27. Rejaie, R., Handley, M., Estrin, D.: RAP: An end-to-end rate-based congestion control mechanism for realtime streams in the Internet. IEEE INFOCOM, 1337–1345, New York, Mar. (1999)

    Google Scholar 

  28. Cai, L., Shen, X., Pan, J., Mark, J. W.: Performance analysis of TCP-friendly AIMD algorithms for multimedia applications. IEEE Trans. Multimed. 7(2), 339–335 (2005)

    Article  Google Scholar 

  29. Handley, M., Floyd, S., Padyhe, S. J., Widmer, J.: TCP friendly rate control (TFRC): Protocol specification. IETF RFC 3448 (2003). Available online at http://www.ietf.org/rfc/rfc3448.txt

  30. Padyhe, J., Firoiu, V., Towsley, D., Krusoe, J.: Modeling TCP throughput: A simple model and its empirical validation, ACM SIGCOMM’98, 303–314, Vancouver, Sept. (1998)

    Google Scholar 

  31. Rhee I., Xu, L.: Limitations of equation-based congestion control. IEEE/ACM Trans. on Networking 15(4), 852–865 (2007)

    Article  Google Scholar 

  32. Greer, D.: Building converged networks with IMS technology. IEEE Comput. 38(11), 14–16 (2005)

    Google Scholar 

  33. Haartsen, J.: The Bluetooth radio system. IEEE Personal Comms. 7(1), 28–36 (2000)

    Article  Google Scholar 

  34. Specification of the Bluetooth System – 2.1 + EDR. Nov. (2007) Available online at http://www.bluetooth.com

  35. Ferro E., Potorì, F.: Bluetooth and Wi-Fi wireless protocols: A survey and a comparison. IEEE Wireless Communications 12(1), 12–26 (2005)

    Article  Google Scholar 

  36. Reeve, M., Bilton, C. E., Holmes, M., Bross, M.: 21CN. IEEE Comms. Eng. Oct. (2005)

    Google Scholar 

  37. Golmie, N., Chevrolier, N., Rebala, O.: Bluetooth and WLAN Coexistence: Challenges and solutions. IEEE Wireless Commun. 10(6), 22–29 (2003)

    Article  Google Scholar 

  38. Valenti, M. C., Robert, M., Reed, J. H.: On the throughput of Bluetooth data transmissions. IEEE Wireless Communication and Networking Conference, 119–123, Orlando, Florida, Mar. (2002)

    Google Scholar 

  39. Razavi, R., Fleury, M., Ghanbari, M.: Detecting congestion within a Bluetooth piconet: Video streaming response. London Comms. Symposium, 181–184 Sept. (2006)

    Google Scholar 

  40. Li, Q., van der Schaar, M.: Providing QoS to layered video over wireless local area networks through real-time retry limit adaptation. IEEE Trans. on Multimed. 6(2), 278–290 (2004)

    Article  Google Scholar 

  41. Gilbert, E. N.: Capacity of burst-noise channel. Bell System Technical J. 39, 1253–1265 (1960)

    Google Scholar 

  42. Elliott, E. O.: Estimates of error rates for codes on burst noise channels. Bell System Technical J. 42, 1977–1997 (1963)

    Google Scholar 

  43. Razavi, R., Fleury, M., Ghanbari, M.: An efficient packetization scheme for Bluetooth video transmission. Electron. Lett. 42(20), 1143–1145 (2006)

    Article  Google Scholar 

  44. Razavi, R., Fleury, M., Ghanbari, M.: Fuzzy control of adaptive timeout for video streaming over a Bluetooth interconnect. 2nd mediaWin Workshop at IEEE 12th Int. Symposium on Computers and Communications, Lisbon, Portugal, July (2007)

    Google Scholar 

  45. Jammeh, E. A., Fleury, M., Wagner, C., Hagras, H., Ghanbari, M.: Interval type-2 fuzzy logic congestion control of video streaming. IET Intelligent Environments Conference, Seattle, July (2008)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge assistance from C. Wagner and H. Hagras in applying interval-type 2 fuzzy logic to an original type-1 controller.

This work was supported by the EPSRC, UK under grant no. EP/C538692/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fleury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fleury, M., Jammeh, E., Razavi, R., Ghanbari, M. (2009). Resource-Aware Fuzzy Logic Control of Video Streaming over IP and Wireless Networks. In: Hassanien, AE., Abawajy, J., Abraham, A., Hagras, H. (eds) Pervasive Computing. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-599-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-599-4_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-598-7

  • Online ISBN: 978-1-84882-599-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics