Advertisement

Logic, Computability and Formal Systems

  • Mark PriestleyEmail author
Part of the History of Computing book series (HC)

Abstract

The work of Comrie and others demonstrated the benefits that could be obtained from even a partial automation of the processes of scientific computation. Human input was still required in order to control operations and to ensure that steps in a calculation were performed in the right order and with the right data, but increasingly all that was required was the ability to perform routine labour which involved little skill or initiative. During the 1930s, the extent to which even this residual human agency could be replaced by machines began to be investigated more systematically, both in theory and in practice. This chapter describes the various accounts of mechanical computation, or effective computability, constructed by mathematical logicians in the mid-1930s, and the associated account of formal languages, which made concrete the idea of a notation that could be processed mechanically, and so by extension could be read and interpreted by actual machines.

Keywords

Turing Machine Formal Language Recursive Function Atomic Formula Standard Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackermann, W.: Zum Hilbertschen Aufbau der reellen Zahlen. Math. Ann. 93, 118–133 (1928). Translated as “On Hilbert’s construction of the real numbers” in van Heijenoort, pp. 493–507 (1967) MathSciNetCrossRefGoogle Scholar
  2. Agar, J.: The Government Machine: A Revolutionary History of the Computer. MIT Press, Cambridge (2003) Google Scholar
  3. Barwise, J., Etchemendy, J.: The Liar: An Essay on Truth and Circularity. Oxford University Press, London (1987) zbMATHGoogle Scholar
  4. Boole, G.: An Investigation of the Laws of Thought. Macmillan, New York (1854) Google Scholar
  5. Carnap, R.: The Logical Syntax of Language. Routledge & Kegan Paul, London (1937) Google Scholar
  6. Carnap, R.: Foundations of Logic and Mathematics. International Encyclopedia of Unified Science, vol. I(3). The University of Chicago Press, Chicago (1939) Google Scholar
  7. Carnap, R.: Introduction to Semantics. Harvard University Press, Cambridge (1942) zbMATHGoogle Scholar
  8. Chaitin, G.J.: Exploring Randomness. Springer, Berlin (2001) zbMATHCrossRefGoogle Scholar
  9. Church, A.: A set of postulates for the foundation of logic. Ann. Math. 33(2), 346–366 (1932) MathSciNetCrossRefGoogle Scholar
  10. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58(2), 345–363 (1936) MathSciNetCrossRefGoogle Scholar
  11. Copeland, B.J.: Computable numbers: a guide (2004a). In: Copeland, B.J. (ed.) The Essential Turing. Oxford University Press, London (2004b) Google Scholar
  12. Curry, H.B.: An analysis of logical substitution. Am. J. Math. 51(3), 363–384 (1929) MathSciNetzbMATHCrossRefGoogle Scholar
  13. Cutland, N.J.: Computability. Cambridge University Press, Cambridge (1980) zbMATHGoogle Scholar
  14. Davis, M.: The Universal Computer. Norton, New York (2000) Google Scholar
  15. Frege, G.: Begriffsschrift, Eine der Arithmetischen Nachgebildete Formelsprache des Reinen Denkens. Halle (1879). Translated into English as “Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought” in van Heijenoort, pp. 1–82 (1967) Google Scholar
  16. Gandy, R.: The confluence of ideas in 1936 (1988). In: Herken, R. (ed.) The Universal Turing Machine: A Half-Century Survey, pp. 55–111. Oxford University Press, London (1988) Google Scholar
  17. Gödel, K.: Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme I. Monatshefte Math. Phys. 38, 173–198 (1931). English translation in Gödel, pp. 145–195 (1986). Page references to this translation Google Scholar
  18. Gödel, K.: On undecidable propositions of formal mathematical systems. Mimeographed lecture notes, taken by S.C. Kleene and J. Barkley Rosser (1934). Reprinted in Gödel, pp. 346–369 (1986) Google Scholar
  19. Hilbert, D.: Über das Unendliche. Math. Ann. 95, 161–190 (1926). Translated as “On the infinite” in van Heijenoort, pp. 367–392 (1967) MathSciNetCrossRefGoogle Scholar
  20. Hilbert, D., Ackermann, W.: Grundzüge der Theoretischen Logik. Springer, Berlin (1928) zbMATHGoogle Scholar
  21. Kleene, S.C.: A theory of positive integers in formal logic. Part I. Am. J. Math. 57(1), 153–173 (1935a) MathSciNetCrossRefGoogle Scholar
  22. Kleene, S.C.: A theory of positive integers in formal logic. Part II. Am. J. Math. 57(2), 219–244 (1935b) MathSciNetCrossRefGoogle Scholar
  23. Kleene, S.C.: General recursive functions of natural numbers. Math. Ann. 112(5), 727–742 (1936a) MathSciNetCrossRefGoogle Scholar
  24. Kleene, S.C.: λ-definability and recursiveness. Duke Math. J. 2(2), 340–353 (1936b) MathSciNetCrossRefGoogle Scholar
  25. Knuth, D.E., Trabb Pardo, L.: The early development of programming languages (1980). In: Metropolis, N., Howlett, J., Rota, G.-C. (eds.) A History of Computing in the Twentieth Century. Academic Press, San Diego (1980) Google Scholar
  26. Morris, C.W.: Foundations of the Theory of Signs. International Encyclopedia of Unified Science, vol. I(2). University of Chicago Press, Chicago (1938) Google Scholar
  27. Pickering, A.: The Mangle of Practice: Time, Agency and Science. University of Chicago Press, Chicago (1995) zbMATHCrossRefGoogle Scholar
  28. Post, E.L.: Finite combinatory processes—formulation 1. J. Symb. Log. 1(3), 103–105 (1936) CrossRefGoogle Scholar
  29. Pratt, V.: Thinking Machines: The Evolution of Artificial Intelligence. Blackwell Sci., Oxford (1987) Google Scholar
  30. Rosser, J.B.: Highlights of the history of the lambda-calculus. Ann. Hist. Comput. 6(4), 337–349 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  31. Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann. (1924). Translated as “On the building blocks of mathematical logic” in van Heijenoort, pp. 357–366 (1967) Google Scholar
  32. Skolem, T.: Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich. Skr. Utg. Videnskapsselskapet Kristiania, I. 6, 1–38 (1923). Translated as “The foundations of elementary arithmetic established by means of the recursive mode of thought, without the use of apparent variables ranging over infinite domain” in van Heijenoort, pp. 302–333 (1967) Google Scholar
  33. Soare, R.I.: Computability and recursion. Bull. Symb. Log. 2(3), 284–321 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  34. Tarski, A.: Pojȩcie prawdy w jȩzykach nauk dedukcyjnych. Warsaw (1933). Translated with additions into German as Tarski (1935), and then into English as “The concept of truth in formalized languages” in Tarski, pp. 152–278 (1983) Google Scholar
  35. Tarski, A.: O ugruntowaniu naukowej semantyki. Prz. Filoz. 39, 50–57 (1936b). Translated into German as Tarski (1936a), and then into English as “The establishment of scientific semantics” in Tarski, pp. 401–408 (1983) Google Scholar
  36. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936) MathSciNetGoogle Scholar
  37. Turing, A.M.: Proposal for development in the mathematics department of an automatic computing engine (ACE). Technical Report, National Physical Laboratory, Teddington, UK (1946). Reprinted in Carpenter and Doran, pp. 20–105 (1986) Google Scholar
  38. Whitehead, A.N., Russell, B.: Principia Mathematica vol. I. Cambridge University Press, Cambridge (1910) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.LondonUK

Personalised recommendations