Skip to main content

Nature-inspired Single-electron Computers

  • Chapter
Artificial Life Models in Hardware

A single-electron circuit is one that creates electronic functions by controlling movements of individual electrons [11]. The circuit uses tunneling junctions, each of which generally consists of two conducting materials facing each other very closely (statically, they are normal capacitors). Under a low-temperature environment, electron tunneling is governed by the physical phenomenon called the Coulomb blockade, where an electron does not tunnel through a junction if the tunneling increases the circuit's electrostatic energy (E c ). To comply with the Coulomb blockade, the capacitance of a tunneling junction must be sufficiently small; for example, if we use 1 pF of capacitance, E c corresponds approximately to 1 mK in temperature (T). Generally, observing the Coulomb blockade in practical experimental environment (e.g., T ~ 0.1 K) is difficult because the blockade effect is disturbed by thermal fluctuations. Therefore, elemental devices of single-electron circuits, that is, tunneling junctions and capacitors, must be constructed in nanoscale (lower than a few tens of nanometers).

These intrinsic quantum behaviors may give us an insight in developing modern computing paradigms, including nature-inspired computing and quantum computing. However, if we employ conventional (deterministic) computing architectures, we need a fully worked-out plan for both computing and circuit architectures, for example, see [5, 10, 27, 29, 30]. Thermal noise tolerance is an important characteristic of single-electron computers, because the rate of random electron tunneling increases exponentially as the temperature increases. Several practical circuits have been developed by improving the process for fabricating ultra-low capacitance of tunneling junctions [29] and by using an error-compensation algorithm in the architecture [27].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A.: Reaction—diffusion algorithm for constructing discrete generalized voronoi diagram. Neural Networks World 6, 635–643 (1994)

    Google Scholar 

  2. Adamatzky, A.: Voronoi-like partition of lattice in cellular automata. Math. Comput. Modelling 51–66 (1996)

    Google Scholar 

  3. Adamatzky, A., De-Lacy-Costello, B., Asai, T.: Reaction Diffusion Computers. Elsevier, Amsterdam (2005)

    Google Scholar 

  4. Asai, T., Kanazawa, Y., Hirose, T., Amemiya, Y.: A mos circuit for depressing synapse and its application to contrast-invariant pattern classification and synchrony detection. In: Proc. 2004 Int. Joint Conf. Neural Networksn, p. W107 (2004)

    Google Scholar 

  5. Benioff, P.: Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett. 48(23), 1581–1585 (1982)

    Article  MathSciNet  Google Scholar 

  6. Blackwell, K.T., Vogl, T.P., Alkon, D.L.: Pattern matching in a model of dendritic spines. Network Comput. Neural Syst. 9(1), 107–121 (1998)

    Article  MATH  Google Scholar 

  7. Carmeliet, P., Tessier-Lavigne, M.: Common mechanisms of nerve and blood vessel wiring. Nature 436(7048), 193–200 (2005)

    Article  Google Scholar 

  8. Collins, J.J., Chow, C.C., Imhoff, T.T.: Stochastic resonance without tuning. Nature 376(6537), 236–238 (1995)

    Article  Google Scholar 

  9. Gerhardt, M., Schuster, H., Tyson, J.J.: Cellular automaton model of excitable media II: Curvature, dispersion, rotating waves and meandering waves. Physica D 46(3), 392–415 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gershenfeld, N.A.: Bulk spin-resonance quantum computation. Science 275(17), 350–356 (1997)

    Article  MathSciNet  Google Scholar 

  11. Gravert, H., Devoret, M.H.: Single Charge Tunneling — Coulomb Blockade Phenomena in Nanostructures. Plenum, New York (1992)

    Google Scholar 

  12. Kanazawa, Y., Asai, T., Ikebe, M., Amemiya, Y.: A novel cmos circuit for depressing synapse and its application to contrast-invariant pattern classification and synchrony detection. Int. J. Robotics Automation 19(4), 206–212 (2004)

    Google Scholar 

  13. Kasai, S., Jinushi, K., Tomozawa, H., Hasegawa, H.: Fabrication and characterization of gaas single electron devices having single and multiple dots based on schottky in-plane-gate and wrap-gate control of two-dimensional electron gas. Jpn. J. Appl. Phys. 36(3B), 1678–1685 (1997)

    Article  Google Scholar 

  14. Klein, R.: Concrete and Abstract Voronoi Diagrams. Springer, Berlin (1990)

    Google Scholar 

  15. Mel, B.W.: Nmda-based pattern discrimination in a modeled cortical neuron. Neural Comput. 4(4), 502–516 (1992)

    Article  Google Scholar 

  16. Mimura, M., Sakaguchi, H., Matsushita, M.: Reaction—diffusion modelling of bacterial colony patterns. Physica A 282(1–2), 283–303 (2000)

    Article  Google Scholar 

  17. Motoike, I.N.: Simple modeling of branching pattern formation in a reaction diffusion system with cellular automaton. J. Phys. Soc. Jpn 76(3), 034,002 (2007)

    Article  Google Scholar 

  18. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tesselations: Concepts and Applications of Voronoi diagrams. Wiley, Chichester (2000)

    MATH  Google Scholar 

  19. Oya, T., Asai, T., Amemiya, Y.: Single-electrron logic device with simple structure. Elec. Lett. 39(13), 965–967 (2003)

    Article  Google Scholar 

  20. Oya, T., Asai, T., Amemiya, Y.: A single-electron reaction-diffusion device for computation of a voronoi diagram. Int. J. Unconventional Comput. 3(4), 271–284 (2007)

    Google Scholar 

  21. Oya, T., Asai, T., Amemiya, Y.: Stochastic resonance in an ensemble of single-electron neu-romorphic devices and its application to competitive neural networks. Chaos, Solitons and Fractals 32(2), 855–861 (2007)

    Article  Google Scholar 

  22. Oya, T., Asai, T., Fukui, T., Amemiya, Y.: A majority-logic device using an irreversible single-electron box. IEEE Trans. Nanotech. 2(1), 15–22 (2003)

    Article  Google Scholar 

  23. Oya, T., Asai, T., Fukui, T., Amemiya, Y.: Reaction-diffusion systems consisting of single-electron circuits. Int. J. Unconventional Comput. 1(2), 177–194 (2005)

    Google Scholar 

  24. Oya, T., Asai, T., Kagaya, R., Hirose, T., Amemiya, Y.: Neuromorphic single-electron circuit and its application to temporal-domain neural competition. In: 2004 Int. Symp. Nonlinear Theory and its Application, pp. 235–239 (2004)

    Google Scholar 

  25. Oya, T., Asai, T., Kagaya, R., Hirose, T., Amemiya, Y.: Neuronal synchrony detection on signle-electron neural network. Chaos, Solitons and Fractals 27(4), 887–894 (2006)

    Article  MATH  Google Scholar 

  26. Senn, W., Segev, I., Tsodyks, M.: Reading neuronal synchrony with depressing synapses. Neural Comput. 10(4), 815–819 (1998)

    Article  Google Scholar 

  27. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995)

    Article  Google Scholar 

  28. Suzuki, Y., Takayama, T., Motoike, I.N., Asai, T.: Striped and spotted pattern generation on reaction-diffusion cellular automata — Theory and lsi implementation. Int. J. Unconventional Comput. 3(1), 1–13 (2007)

    Google Scholar 

  29. Takahashi, Y., Nagase, M., Namatsu, H., Kurihara, K., Iwadate, K., Nakajima, K., Horiguchi, S., Murase, K., Tabe, M.: Fabrication technique for si single-electron transistor operating at room-temperature. Elec. Lett. 31(2), 136–137 (1995)

    Article  Google Scholar 

  30. Tucker, J.R.: Complementary digital logic based on the coulomb blockade. J. Appl. Phys. 72(9), 4399–4413 (1992)

    Article  Google Scholar 

  31. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. 237(641), 37–72 (1952)

    Article  Google Scholar 

  32. Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47(19), 1400–1403 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Asai, T., Oya, T. (2009). Nature-inspired Single-electron Computers. In: Adamatzky, A., Komosinski, M. (eds) Artificial Life Models in Hardware. Springer, London. https://doi.org/10.1007/978-1-84882-530-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-530-7_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-529-1

  • Online ISBN: 978-1-84882-530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics