Information processing in natural systems radically differs from current information technology. This difference is particularly apparent in the area of robotics, where both the organisms and artificial devices face a similar challenge: the need to act in real time in a complex environment and to do so with computing resources severely limited by their size and power consumption. Biological systems evolved enviable computing capabilities to cope with noisy and harsh environments and to compete with rivalling life forms. Information processing in biological systems, from single-cell organisms to brains, directly utilises the physical and chemical processes of cellular and intracellular dynamics, whereas that in artificial systems is, in principle, independent of any physical implementation. The formidable gap between artificial and natural systems in terms of information processing capability [1] motivates research into biological modes of information processing. Hybrid artifacts, for example, try to overcome the theoretic and physical limits of information processing in solid-state realisations of digital von Neumann machines by exploiting the self-organisation of naturally evolved systems in engineered environments [2, 3].
This chapter presents a particular unconventional computing system, the Φ-bot, whose control is based on the behaviour of the true slime mould Physarum polycephalum. The second section gives a short introduction to the information-processing capabilities of this organism. The third section describes the two generations of the Φ-bot built so far. To discuss information-theoretic aspects of this robot, it is useful to sketch the concept of bounded computability that relates generic traits of information-processing systems with specific physico-chemical constraints on the realisation of such systems in different classes of computational media. This is done in the fourth section. The concluding section gives an outlook on engineering as well as foundational issues that will be important for the future development of the Φ-bot.
Keywords
- Autonomous Robot
- Physarum Polycephalum
- Syntactic Representation
- Organic Code
- Computational Medium
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Conrad, M.: The importance of molecular hierarchy in information preocessing. In: C.H. Waddington (ed.) Towards a theoreritcal biology, vol. 4, pp. 222–228. Edinburgh University Press, Edinburgh (1972)
Adamatzky, A., Costello, B., Asai, T.: Reaction-diffusion computers. Elsevier Science, New York, NY, USA (2005)
Zauner, K.P.: Molecular information technology. Critical Reviews in Solid State and Material Sciences 30(1), 33–69 (2005)
Wohlfarth-Bottermann, K.E.: Oscillatory contraction activity in physarum. The Journal of Experimental Biology 81, 15–32 (1979)
Hejnowicz, Z., Wohlfarth-Bottermann, K.E.: Propagated waves induced by gradients of physiological factors within plasmodia of Physarum polycephalum. Planta 150, 144–152 (1980)
Matsumoto, K., Ueda, T., Kobatake, Y.: Propagation of phase wave in relation to tactic responses by the plasmodium of Physarum polycephalum. Journal of Theoretical Biology 122, 339–345 (1986)
Tanaka, H., Yoshimura, H., Miyake, Y., Imaizumi, J., Nagayama, K., Shimizu, H.: Information processing of Physarum polycephalum studied by micro-thermography. Protoplasma 138, 98–104 (1987)
Matsumoto, K., Ueda, T., Kobatake, Y.: Reversal of thermotaxis with oscillatory stimulation in the plasmodium of Physarum polycephalum. Journal of Theoretical Biology 131, 175–182 (1988)
Miura, H., Yano, M.: A model of organization of size invariant positional information in taxis of Physarum plasmodium. Progress of Theoretical Physics 100(2), 235–251 (1998)
Miyake, Y., Tabata, S., Murakami, H., Yano, M., Shimizu, H.: Environmental-dependent self-organization of positional information field in chemotaxis of Physarum plasmodium. Journal of Theoretical Biology 178, 341–353 (1996)
Gierer, A., Meinhardt, H.: Theory of biological pattern formation. Kybernetik 12, 30– 39 (1972)
Takamatsu, A., Fujii, T.: Construction of a living coupled oscillator system of plasmodial slime mold by a microfabricated structure. Sensors Update 10(1), 33–46 (2002)
Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T., Endo, I.: Spatiotemporal symmetry in rings of coupled biological oscillators of physarum plasmodial slime mold. Physical Reviews Letters 87(7), 078102 (2001)
Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)
Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proceedings of the Royal Society: Biological Sciences 271(1554), 2305–2310 (2004)
Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Physical Review Letters 100(1), 018101 (2008)
Nakagaki, T., Uemura, S., Kakiuchi, Y., Ueda, T.: Action spectrum for sporulation and photoavoidance in the plasmodium of Physarum polycephalum, as modified differentially by temperature and starvation. Photochemistry and Photobiology 64(5), 859–862 (1996)
Wohlfarth-Botterman, K.E.: Oscillating contractions in protoplasmic strands of physarum: Simultaneous tensiometry of logitudinal and radial rhythms, periodicity analysis and temperature dependence. Journal of Experimental Biology 67, 49–59 (1977)
Macey, P.: Impedance spectroscopy based interfacing with a living cell for biosensors and bio-coporcessors. Part III Project Report, School of Electronics and Computer Science, University of Southampton (2007)
Jones, G.: Robotic platform for molecular controlled robots. Part III Project Report, School of Electronics and Computer Science, University of Southampton (2006)
Takamatsu, A., Fujii, T., Endo, I.: Control of interaction strength in a network of the true slime mold by a microfabricated structure. BioSystems 55, 33–38 (2000)
Takamatsu, A., Fujii, T., Yokota, H., Hosokawa, K., Higuchi, T., Endo, I.: Controlling the geometry and the coupling strength of the oscillator system in plasmodium of Physarum poly-cephalum by microfabricated structure. Protoplasma 210, 164–171 (2000)
Coster, H.G.L., Chilcott, T.C., Coster, C.F.: Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochemistry and Bioenergetics 40, 79–98 (1996)
Braitenberg, V.: Vehicles: Experiments in synthetic psychology. MIT, Cambridge, MA (1984)
Shannon, C., Weaver, W.: Mathematical theory of communication. University of Illinois Press, Illinois (1949)
Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading, MA (1994)
Simon, H.: Models of Bounded Rationality, 3 vols. MIT, Cambridge, MA (1982/1997)
Tsuda, S., Zauner, K.P., Gunji, Y.P.: Computing substrates and life. In: S. Artmann, P. Dittrich (eds.) Explorations in the Complexity of Possible Life: Abstracting and Synthesizing the Principles of Living Systems, Proceedings of the 7th German Workshop on Artificial Life, pp. 39–49. IOS, Jena, Germany (2006)
Artmann, S.: Biological information. In: S. Sarkar, A. Plutynski (eds.) A companion to the philosophy of biology, pp. 22–39. Blackwell, Malden, MA (2008)
Morris, C.: Writings on the general theory of signs. Mouton, Den Haag and Paris (1971)
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, 3rd edn. Addison-Wesley, Reading, MA (2007)
Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn. Wiley, New York (2006)
Barbieri, M.: Organic Codes: An introduction to semantic biology. Cambridge University Press, Cambridge (2003)
Artmann, S.: Basic semiosis as code-based control. Biosemiotics 2, 31–38 (2009)
MacKay, D.: Information, mechanism and meaning. MIT, Cambridge, MA (1969)
Lewis, D.: Convention: a philosophical study, 1st edn. Harvard University Press, Princeton, New Jersey (1968)
Aono, M., Hara, M.: Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. In: 6th International Conference, UC 2007, LNCS, vol. 4618, pp. 41–54. Springer, Kingston, Canada (2007)
Nomura, S.: Symbolization of an object and its freedom in biological systems. Ph.D. thesis, Kobe University (2001)
Takamatsu, A., Yamamoto, T., Fujii, T.: Spontaneous switching of frequency-locking by periodic stimulus in oscillators of plasmodium of the true slime mold. BioSystems 76, 133–140 (2004)
Revilla, F., Zauner, K.P., Morgan, H.: Physarum polycephalum on a chip. In: J.L. Viovy, P. Tabeling, S. Descroix, L. Malaquin (eds.) The proceedings of μTAS 2007, vol. 2, pp. 1089–1091 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag London Limited
About this chapter
Cite this chapter
Tsuda, S., Artmann, S., Zauner, KP. (2009). The Phi-Bot: A Robot Controlled by a Slime Mould. In: Adamatzky, A., Komosinski, M. (eds) Artificial Life Models in Hardware. Springer, London. https://doi.org/10.1007/978-1-84882-530-7_10
Download citation
DOI: https://doi.org/10.1007/978-1-84882-530-7_10
Publisher Name: Springer, London
Print ISBN: 978-1-84882-529-1
Online ISBN: 978-1-84882-530-7
eBook Packages: Computer ScienceComputer Science (R0)