Skip to main content

The Phi-Bot: A Robot Controlled by a Slime Mould

  • Chapter

Information processing in natural systems radically differs from current information technology. This difference is particularly apparent in the area of robotics, where both the organisms and artificial devices face a similar challenge: the need to act in real time in a complex environment and to do so with computing resources severely limited by their size and power consumption. Biological systems evolved enviable computing capabilities to cope with noisy and harsh environments and to compete with rivalling life forms. Information processing in biological systems, from single-cell organisms to brains, directly utilises the physical and chemical processes of cellular and intracellular dynamics, whereas that in artificial systems is, in principle, independent of any physical implementation. The formidable gap between artificial and natural systems in terms of information processing capability [1] motivates research into biological modes of information processing. Hybrid artifacts, for example, try to overcome the theoretic and physical limits of information processing in solid-state realisations of digital von Neumann machines by exploiting the self-organisation of naturally evolved systems in engineered environments [2, 3].

This chapter presents a particular unconventional computing system, the Φ-bot, whose control is based on the behaviour of the true slime mould Physarum polycephalum. The second section gives a short introduction to the information-processing capabilities of this organism. The third section describes the two generations of the Φ-bot built so far. To discuss information-theoretic aspects of this robot, it is useful to sketch the concept of bounded computability that relates generic traits of information-processing systems with specific physico-chemical constraints on the realisation of such systems in different classes of computational media. This is done in the fourth section. The concluding section gives an outlook on engineering as well as foundational issues that will be important for the future development of the Φ-bot.

Keywords

  • Autonomous Robot
  • Physarum Polycephalum
  • Syntactic Representation
  • Organic Code
  • Computational Medium

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conrad, M.: The importance of molecular hierarchy in information preocessing. In: C.H. Waddington (ed.) Towards a theoreritcal biology, vol. 4, pp. 222–228. Edinburgh University Press, Edinburgh (1972)

    Google Scholar 

  2. Adamatzky, A., Costello, B., Asai, T.: Reaction-diffusion computers. Elsevier Science, New York, NY, USA (2005)

    Google Scholar 

  3. Zauner, K.P.: Molecular information technology. Critical Reviews in Solid State and Material Sciences 30(1), 33–69 (2005)

    CrossRef  Google Scholar 

  4. Wohlfarth-Bottermann, K.E.: Oscillatory contraction activity in physarum. The Journal of Experimental Biology 81, 15–32 (1979)

    Google Scholar 

  5. Hejnowicz, Z., Wohlfarth-Bottermann, K.E.: Propagated waves induced by gradients of physiological factors within plasmodia of Physarum polycephalum. Planta 150, 144–152 (1980)

    CrossRef  Google Scholar 

  6. Matsumoto, K., Ueda, T., Kobatake, Y.: Propagation of phase wave in relation to tactic responses by the plasmodium of Physarum polycephalum. Journal of Theoretical Biology 122, 339–345 (1986)

    CrossRef  Google Scholar 

  7. Tanaka, H., Yoshimura, H., Miyake, Y., Imaizumi, J., Nagayama, K., Shimizu, H.: Information processing of Physarum polycephalum studied by micro-thermography. Protoplasma 138, 98–104 (1987)

    CrossRef  Google Scholar 

  8. Matsumoto, K., Ueda, T., Kobatake, Y.: Reversal of thermotaxis with oscillatory stimulation in the plasmodium of Physarum polycephalum. Journal of Theoretical Biology 131, 175–182 (1988)

    CrossRef  Google Scholar 

  9. Miura, H., Yano, M.: A model of organization of size invariant positional information in taxis of Physarum plasmodium. Progress of Theoretical Physics 100(2), 235–251 (1998)

    CrossRef  Google Scholar 

  10. Miyake, Y., Tabata, S., Murakami, H., Yano, M., Shimizu, H.: Environmental-dependent self-organization of positional information field in chemotaxis of Physarum plasmodium. Journal of Theoretical Biology 178, 341–353 (1996)

    CrossRef  Google Scholar 

  11. Gierer, A., Meinhardt, H.: Theory of biological pattern formation. Kybernetik 12, 30– 39 (1972)

    CrossRef  Google Scholar 

  12. Takamatsu, A., Fujii, T.: Construction of a living coupled oscillator system of plasmodial slime mold by a microfabricated structure. Sensors Update 10(1), 33–46 (2002)

    CrossRef  Google Scholar 

  13. Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T., Endo, I.: Spatiotemporal symmetry in rings of coupled biological oscillators of physarum plasmodial slime mold. Physical Reviews Letters 87(7), 078102 (2001)

    CrossRef  Google Scholar 

  14. Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)

    CrossRef  MathSciNet  Google Scholar 

  15. Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proceedings of the Royal Society: Biological Sciences 271(1554), 2305–2310 (2004)

    CrossRef  Google Scholar 

  16. Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Physical Review Letters 100(1), 018101 (2008)

    CrossRef  Google Scholar 

  17. Nakagaki, T., Uemura, S., Kakiuchi, Y., Ueda, T.: Action spectrum for sporulation and photoavoidance in the plasmodium of Physarum polycephalum, as modified differentially by temperature and starvation. Photochemistry and Photobiology 64(5), 859–862 (1996)

    CrossRef  Google Scholar 

  18. Wohlfarth-Botterman, K.E.: Oscillating contractions in protoplasmic strands of physarum: Simultaneous tensiometry of logitudinal and radial rhythms, periodicity analysis and temperature dependence. Journal of Experimental Biology 67, 49–59 (1977)

    Google Scholar 

  19. Macey, P.: Impedance spectroscopy based interfacing with a living cell for biosensors and bio-coporcessors. Part III Project Report, School of Electronics and Computer Science, University of Southampton (2007)

    Google Scholar 

  20. Jones, G.: Robotic platform for molecular controlled robots. Part III Project Report, School of Electronics and Computer Science, University of Southampton (2006)

    Google Scholar 

  21. Takamatsu, A., Fujii, T., Endo, I.: Control of interaction strength in a network of the true slime mold by a microfabricated structure. BioSystems 55, 33–38 (2000)

    CrossRef  Google Scholar 

  22. Takamatsu, A., Fujii, T., Yokota, H., Hosokawa, K., Higuchi, T., Endo, I.: Controlling the geometry and the coupling strength of the oscillator system in plasmodium of Physarum poly-cephalum by microfabricated structure. Protoplasma 210, 164–171 (2000)

    CrossRef  Google Scholar 

  23. Coster, H.G.L., Chilcott, T.C., Coster, C.F.: Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochemistry and Bioenergetics 40, 79–98 (1996)

    CrossRef  Google Scholar 

  24. Braitenberg, V.: Vehicles: Experiments in synthetic psychology. MIT, Cambridge, MA (1984)

    Google Scholar 

  25. Shannon, C., Weaver, W.: Mathematical theory of communication. University of Illinois Press, Illinois (1949)

    MATH  Google Scholar 

  26. Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading, MA (1994)

    MATH  Google Scholar 

  27. Simon, H.: Models of Bounded Rationality, 3 vols. MIT, Cambridge, MA (1982/1997)

    Google Scholar 

  28. Tsuda, S., Zauner, K.P., Gunji, Y.P.: Computing substrates and life. In: S. Artmann, P. Dittrich (eds.) Explorations in the Complexity of Possible Life: Abstracting and Synthesizing the Principles of Living Systems, Proceedings of the 7th German Workshop on Artificial Life, pp. 39–49. IOS, Jena, Germany (2006)

    Google Scholar 

  29. Artmann, S.: Biological information. In: S. Sarkar, A. Plutynski (eds.) A companion to the philosophy of biology, pp. 22–39. Blackwell, Malden, MA (2008)

    Google Scholar 

  30. Morris, C.: Writings on the general theory of signs. Mouton, Den Haag and Paris (1971)

    Google Scholar 

  31. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, 3rd edn. Addison-Wesley, Reading, MA (2007)

    Google Scholar 

  32. Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn. Wiley, New York (2006)

    MATH  Google Scholar 

  33. Barbieri, M.: Organic Codes: An introduction to semantic biology. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  34. Artmann, S.: Basic semiosis as code-based control. Biosemiotics 2, 31–38 (2009)

    CrossRef  Google Scholar 

  35. MacKay, D.: Information, mechanism and meaning. MIT, Cambridge, MA (1969)

    Google Scholar 

  36. Lewis, D.: Convention: a philosophical study, 1st edn. Harvard University Press, Princeton, New Jersey (1968)

    Google Scholar 

  37. Aono, M., Hara, M.: Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. In: 6th International Conference, UC 2007, LNCS, vol. 4618, pp. 41–54. Springer, Kingston, Canada (2007)

    Google Scholar 

  38. Nomura, S.: Symbolization of an object and its freedom in biological systems. Ph.D. thesis, Kobe University (2001)

    Google Scholar 

  39. Takamatsu, A., Yamamoto, T., Fujii, T.: Spontaneous switching of frequency-locking by periodic stimulus in oscillators of plasmodium of the true slime mold. BioSystems 76, 133–140 (2004)

    CrossRef  Google Scholar 

  40. Revilla, F., Zauner, K.P., Morgan, H.: Physarum polycephalum on a chip. In: J.L. Viovy, P. Tabeling, S. Descroix, L. Malaquin (eds.) The proceedings of μTAS 2007, vol. 2, pp. 1089–1091 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tsuda, S., Artmann, S., Zauner, KP. (2009). The Phi-Bot: A Robot Controlled by a Slime Mould. In: Adamatzky, A., Komosinski, M. (eds) Artificial Life Models in Hardware. Springer, London. https://doi.org/10.1007/978-1-84882-530-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-530-7_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-529-1

  • Online ISBN: 978-1-84882-530-7

  • eBook Packages: Computer ScienceComputer Science (R0)