Skip to main content

Nuclear-Based Imaging: Description of Technology and Protocols

  • Chapter
  • First Online:
Cardiac Imaging in Electrophysiology
  • 1877 Accesses

Abstract

In general, nuclear cardiology techniques are considered robust and accurate for clinical imaging of heart disease. Thus, they will likely continue to play a key role in the assessment of myocardial perfusion, function, viability, and neural function. The technology is rapidly developing toward smaller and faster devices with improved sensitivity and resolution dedicated to cardiac applications. The development of novel tracers will further expand the clinical applications. Especially the new molecular imaging techniques can enable more personalized decision making. This chapter reviews the basic aspects of nuclear imaging techniques and imaging protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcassa C, Bax JJ, Bengel F, et al. Clinical value, cost-effectiveness, and safety of myocardial perfusion scintigraphy: a position statement. Eur Heart J. 2008;29:557-563.

    Article  PubMed  Google Scholar 

  2. Le Guludec D, Lautamaki R, Knuuti J, Bax JJ, Bengel FM. Present and future of clinical cardiovascular PET imaging in Europe-a position statement by the European council of nuclear cardiology (ECNC). Eur J Nucl Med Mol Imaging. 2008;35(9):1709-1724.

    Article  PubMed  Google Scholar 

  3. Higuchi T, Bengel FM. Cardiovascular nuclear imaging: from perfusion to molecular function: non-invasive imaging. Heart. 2008;94:809-816.

    Article  PubMed  Google Scholar 

  4. Segall GM, Davis MJ. Prone versus supine thallium myocardial SPECT: a method to decrease artifactual inferior wall defects. J Nucl Med. 1989;30:548-555.

    PubMed  CAS  Google Scholar 

  5. Patton JA, Slomka PJ, Germano G, Berman DS. Recent technologic advances in nuclear cardiology. J Nucl Cardiol. 2007;14:501-513.

    Article  PubMed  Google Scholar 

  6. Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol. 2007;14:455-465.

    Article  PubMed  Google Scholar 

  7. Klein JL, Garcia EV, DePuey EG, et al. Reversibility bull’s-eye: a new polar bull’s-eye map to quantify reversibility of stress-induced SPECT thallium-201 myocardial perfusion defects. J Nucl Med. 1990;31:1240-1246.

    PubMed  CAS  Google Scholar 

  8. Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med. 1998;25:1313-1321.

    Article  PubMed  CAS  Google Scholar 

  9. Slomka PJ, Nishina H, Berman DS, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 2005;12:66-77.

    Article  PubMed  Google Scholar 

  10. Germano G, Kiat H, Kavanagh PB, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995;36:2138-2147.

    PubMed  CAS  Google Scholar 

  11. Choi JY, Lee KH, Kim SJ, et al. Gating provides improved accuracy for differentiating artifacts from true lesions in equivocal fixed defects on technetium 99m tetrofosmin perfusion SPECT. J Nucl Cardiol. 1998;5:395-401.

    Article  PubMed  CAS  Google Scholar 

  12. Bateman TM, Cullom SJ. Attenuation correction single-photon emission computed tomography myocardial perfusion imaging. Semin Nucl Med. 2005;35:37-51.

    Article  PubMed  Google Scholar 

  13. Hendel RC, Berman DS, Cullom SJ, et al. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation. 1999;99:2742-2749.

    PubMed  CAS  Google Scholar 

  14. Tonge CM, Manoharan M, Lawson RS, Shields RA, Prescott MC. Attenuation correction of myocardial SPECT studies using low resolution computed tomography images. Nucl Med Commun. 2005;26:231-237.

    Article  PubMed  Google Scholar 

  15. Hesse B, Tagil K, Cuocolo A, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging. 2005;32:855-897.

    Article  PubMed  CAS  Google Scholar 

  16. Cranley K, Millar R, Bell T. Correction for deadtime losses in a gamma camera data analysis system. Eur J Nucl Med. 1980;5:377-382.

    Article  PubMed  CAS  Google Scholar 

  17. Daube-Witherspoon ME, Carson RE. Unified deadtime correction model for PET. IEEE Trans Med Imaging. 1991;10:267-275.

    Article  PubMed  CAS  Google Scholar 

  18. deKemp RA, Nahmias C. Attenuation correction in PET using single photon transmission measurement. Med Phys. 1994;21:771-778.

    Article  PubMed  CAS  Google Scholar 

  19. Karp JS, Muehllehner G, Qu H, Yan XH. Singles transmission in volume-imaging PET with a 137Cs source. Phys Med Biol. 1995;40:929-944.

    Article  PubMed  CAS  Google Scholar 

  20. Yu SK, Nahmias C. Single-photon transmission measurements in positron tomography using 137Cs. Phys Med Biol. 1995;40:1255-1266.

    Article  PubMed  CAS  Google Scholar 

  21. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging. 2002;29:922-927.

    Article  PubMed  CAS  Google Scholar 

  22. Dawood M, Kösters T, Fieseler M, et al. Motion correction in respiratory gated cardiac PET/CT using multi-scale optical flow. Med Image Comput Comput Assist Interv. 2008;12:155-162.

    Google Scholar 

  23. Lamare F, Teras M, Kokki T, et al. Correction of respiratory motion in dual gated cardiac imaging. J Nucl Med. 2008;49(suppl 1):389.

    Google Scholar 

  24. Teräs M, Kokki T, Durand-Schaefer N, et al. Dual-gated cardiac PET-clinical feasibility study. Eur J Nucl Med Mol Imaging. 2010;37(3):505-516.

    Article  PubMed  Google Scholar 

  25. Boussion N, Hatt M, Lamare F, Rest CC, Visvikis D. Contrast enhancement in emission tomography by way of synergistic PET/CT image combination. Comput Methods Programs Biomed. 2008;90:191-201.

    Article  PubMed  CAS  Google Scholar 

  26. Hesse B, Lindhardt TB, Acampa W, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging. 2008;35:851-885.

    Article  PubMed  CAS  Google Scholar 

  27. Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol. 2008;15(3):442-455.

    Article  PubMed  Google Scholar 

  28. Grunwald AM, Watson DD, Holzgrefe HH Jr, Irving JF, Beller GA. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation. 1981;64:610-618.

    Article  PubMed  CAS  Google Scholar 

  29. Dilsizian V, Smeltzer WR, Freedman NM, Dextras R, Bonow RO. Thallium reinjection after stress-redistribution imaging. Does 24-hour delayed imaging after reinjection enhance detection of viable myocardium? Circulation. 1991;83:1247-1255.

    PubMed  CAS  Google Scholar 

  30. Takahashi N, Reinhardt CP, Marcel R, Leppo JA. Myocardial uptake of 99mTc-tetrofosmin, sestamibi, and 201Tl in a model of acute coronary reperfusion. Circulation. 1996;94:2605-2613.

    PubMed  CAS  Google Scholar 

  31. Beanlands RS, Dawood F, Wen WH, et al. Are the kinetics of technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation. 1990;82:1802-1814.

    Article  PubMed  CAS  Google Scholar 

  32. Meerdink DJ, Leppo JA. Comparison of hypoxia and ouabain effects on the myocardial uptake kinetics of technetium-99m hexakis 2-methoxyisobutyl isonitrile and thallium-201. J Nucl Med. 1989;30:1500-1506.

    PubMed  CAS  Google Scholar 

  33. Jain D, Wackers FJ, Mattera J, McMahon M, Sinusas AJ, Zaret BL. Biokinetics of technetium-99m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol. J Nucl Med. 1993;34:1254-1259.

    PubMed  CAS  Google Scholar 

  34. Munch G, Neverve J, Matsunari I, Schroter G, Schwaiger M. Myocardial technetium-99m-tetrofosmin and technetium-99m sestamibi kinetics in normal subjects and patients with coronary artery disease. J Nucl Med. 1997;38:428-432.

    PubMed  CAS  Google Scholar 

  35. Berman DS, Kiat HS, Van Train KF, Germano G, Maddahi J, Friedman JD. Myocardial perfusion imaging with technetium-99m-sestamibi: comparative analysis of available imaging protocols. J Nucl Med. 1994;35:681-688.

    PubMed  CAS  Google Scholar 

  36. Heo J, Kegel J, Iskandrian AS, Cave V, Iskandrian BB. Comparison of same-day protocols using technetium-99m-sestamibi myocardial imaging. J Nucl Med. 1992;33:186-191.

    PubMed  CAS  Google Scholar 

  37. Sciagra R, Bisi G, Santoro GM, Rossi V, Fazzini PF. Nitrate versus rest myocardial scintigraphy with technetium 99m-sestamibi: relationship of tracer uptake to regional left ventricular function and its significance in the detection of viable hibernating myocardium. Am J Card Imaging. 1995;9:157-166.

    PubMed  CAS  Google Scholar 

  38. Berman DS, Kiat H, Van Train K, Friedman JD, Wang FP, Germano G. Dual-isotope myocardial perfusion SPECT with rest thallium-201 and stress Tc-99m sestamibi. Cardiol Clin. 1994;12:261-270.

    PubMed  CAS  Google Scholar 

  39. Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42:831-837.

    PubMed  CAS  Google Scholar 

  40. Germano G, Berman DS. On the accuracy and reproducibility of quantitative gated myocardial perfusion SPECT. J Nucl Med. 1999;40:810-813.

    PubMed  CAS  Google Scholar 

  41. Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-executive summary: a report of the American college of cardiology/ American heart association task force on practice guidelines (ACC/AHA/ASNC committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging). Circulation. 2003;108:1404-1418.

    Article  PubMed  Google Scholar 

  42. Daou D, Van Kriekinge SD, Coaguila C, et al. Automatic quantification of right ventricular function with gated blood pool SPECT. J Nucl Cardiol. 2004;11:293-304.

    Article  PubMed  Google Scholar 

  43. Arora R, Ferrick KJ, Nakata T, et al. I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol. 2003;10(2):121-131.

    Article  PubMed  Google Scholar 

  44. Nagahara D, Nakata T, Hashimoto A, et al. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med. 2008;49(2):225-233.

    Article  PubMed  Google Scholar 

  45. Bax JJ, Kraft O, Buxton AE, et al. 123-I-MIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing. Circ Cardiovasc Imaging. 2008;1(2):131-140.

    Article  PubMed  Google Scholar 

  46. Araujo LI, Lammertsma AA, Rhodes CG, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation. 1991;83:875-885.

    PubMed  CAS  Google Scholar 

  47. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989;14:639-652.

    Article  PubMed  CAS  Google Scholar 

  48. Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol. 1979;43:209-218.

    Article  PubMed  CAS  Google Scholar 

  49. Huang SC, Williams BA, Krivokapich J, Araujo L, Phelps ME, Schelbert HR. Rabbit myocardial 82Rb kinetics and a compartmental model for blood flow estimation. Am J Physiol. 1989;256:H1156-H1164.

    PubMed  CAS  Google Scholar 

  50. Bellina CR, Parodi O, Camici P, et al. Simultaneous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow. J Nucl Med. 1990;31:1335-1343.

    PubMed  CAS  Google Scholar 

  51. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol. 1990;15:1032-1042.

    Article  PubMed  CAS  Google Scholar 

  52. Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model. Circulation. 1990;82:1377-1386.

    Article  PubMed  CAS  Google Scholar 

  53. Anagnostopoulos C, Almonacid A, El Fakhri G, et al. Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. Eur J Nucl Med Mol Imaging. 2008;35:1593-1601.

    Article  PubMed  Google Scholar 

  54. Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007;34:1765-1774.

    Article  PubMed  Google Scholar 

  55. Shah A, Schelbert HR, Schwaiger M, et al. Measurement of regional myocardial blood flow with N-13 ammonia and positron-emission tomography in intact dogs. J Am Coll Cardiol. 1985;5:92-100.

    Article  PubMed  CAS  Google Scholar 

  56. Araujo L, Schelbert HR. Dynamic positron emission tomography in ischaemic heart disease. Am J Card Imaging. 1984;1:117-124.

    Google Scholar 

  57. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med. 1999;40:1848-1856.

    PubMed  CAS  Google Scholar 

  58. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schafers KP, Luscher TF, Camici PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation. 2000;102:1233-1238.

    PubMed  CAS  Google Scholar 

  59. Pitkänen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve in young men with familial combined hyperlipidemia. Circulation. 1999;99(13):1678-1684.

    PubMed  Google Scholar 

  60. Pitkänen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes. 1998;47(2):248-254.

    Article  PubMed  Google Scholar 

  61. Knuuti J, Kajander S, Mäki M, Ukkonen H. Quantification of myocardial blood flow will reform the detection of CAD. J Nucl Cardiol. 2009;16(4):497-506.

    Article  PubMed  Google Scholar 

  62. Schelbert HR, Henze E, Schon HR. C-11 palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. IV. In vivo demonstration of impaired fatty acid oxidation in acute myocardial ischaemia. Am Heart J. 1983;106:736-750.

    Article  PubMed  CAS  Google Scholar 

  63. Buxton DB, Schwaiger M, Nguyen A, Phelps M, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res. 1988;63:628-634.

    PubMed  CAS  Google Scholar 

  64. Armbrecht JJ, Buxton DB, Brunken R, Phelps M, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1–1 1 C] acetate and dynamic positron tomography. Circulation. 1989;80:863-872.

    Article  PubMed  CAS  Google Scholar 

  65. Walsh MN, Geltman EM, Brown MA. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med. 1989;30:1798-1808.

    PubMed  CAS  Google Scholar 

  66. Knuuti J, Bengel FM. Positron emission tomography and molecular imaging. Heart. 2008;94:360-367.

    Article  PubMed  CAS  Google Scholar 

  67. Schwaiger M, Bengel FM. From thallium scan to molecular imaging. Mol Imaging Biol. 2002;4:387-398.

    Article  PubMed  Google Scholar 

  68. Wu JC, Bengel FM, Gambhir SS. Cardiovascular molecular imaging. Radiology. 2007;244:337-355.

    Article  PubMed  Google Scholar 

  69. Goldstein DS, Chang PC, Eisenhofer G, et al. Positron emission tomographic imaging of cardiac sympathetic innervation and function. Circulation. 1990;81:1606-1621.

    Article  PubMed  CAS  Google Scholar 

  70. Wieland DM, Rosenspire KC, Hutchins GD, et al. Neuronal mapping of the heart with 6-[18F] fluorometaraminol. J Med Chem. 1990;33:956-964.

    Article  PubMed  CAS  Google Scholar 

  71. Schwaiger M, Kalff V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. [see comment]. Circulation. 1990;82:457-464.

    Article  PubMed  CAS  Google Scholar 

  72. Munch G, Nguyen NTB, Nekolla SG, et al. Evaluation of sympathetic nerve terminals with [11 C]epinephrine and [11 C]hydroxyephedrine and positron emission tomography. Circulation. 2000;101:516-523.

    PubMed  CAS  Google Scholar 

  73. Syrota A. Positron emission tomography: evaluation of cardiac receptors. In: Marcus ML, Schelbert HR, Skorton DJ, Wolf GL, eds. Cardiac Imaging: A Companion to Braunwald’s Heart Disease. Philadelphia: W B Saunders; 1991:1256-1270.

    Google Scholar 

  74. Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation. 1997;96:3416-3422.

    PubMed  Google Scholar 

  75. Le Guludec D, Delforge J, Syrota A, et al. In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation. 1994;90:172-178.

    PubMed  Google Scholar 

  76. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. 2007;115:1464-1480.

    Article  PubMed  Google Scholar 

  77. Bax JJ, Beanlands RS, Klocke FJ, et al. Diagnostic and clinical perspectives of fusion imaging in cardiology: is the total greater than the sum of its parts? Heart. 2007;93(1):16-22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhani Knuuti M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Knuuti, J. (2012). Nuclear-Based Imaging: Description of Technology and Protocols. In: Auricchio, A., Singh, J., Rademakers, F. (eds) Cardiac Imaging in Electrophysiology. Springer, London. https://doi.org/10.1007/978-1-84882-486-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-486-7_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-485-0

  • Online ISBN: 978-1-84882-486-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics