Skip to main content

Cardiac CT and Detection of Coronary Artery Disease

  • Chapter
  • 2283 Accesses

Abstract

Cardiac CT allows non-invasive imaging of the coronary arteries. Under certain circumstances, it can, therefore, play an important role for diagnosing coronary artery disease. Particularly in patients with a relatively low pre-test likelihood of the disease, coronary CT angiography has been shown to allow for the detection of coronary stenoses with high sensitivity and is considered a useful technique to rule out coronary artery disease in selected clinical settings. Coronary artery imaging in patients with advanced disease or after coronary revascularization is more difficult and currently not considered a clinical indication for CT. In addition to detecting luminal stenosis, CT has the potential to visualize and characterize non-stenotic coronary atherosclerotic plaque. Based on a large amount of prognostic data, coronary calcium can be used for refined risk stratification concerning future cardiovascular events. Imaging of non-calcified plaque is currently considered experimental, and should not be used for clinical decision-making. Future improvements in image quality are expected to expand the clinical role of cardiac CT in the assessment of coronary artery disease.

This is a preview of subscription content, log in via an institution.

References

  1. Achenbach S, Cardiac CT. State of the art for the detection of coronary arterial stenosis. J Cardiovasc Comput Tomogr. 2007;1:3–20

    Article  PubMed  Google Scholar 

  2. Achenbach S, Ropers U, Kuettner A, et al Randomized comparison of 64-slice single- and dual-source computed tomography for the detection of coronary artery disease. J Am Coll Cardiol Imaging. 2008;1:177–186

    Google Scholar 

  3. Ferencik M, Ropers D, Abbara S, et al Diagnostic accuracy of image postprocessing methods for the detection of coronary artery stenoses by using multidetector CT. Radiology. 2007;243:696–702

    Article  PubMed  Google Scholar 

  4. Lim MCL, Wong TW, Yaneza LO, De Larrazabal C, Lau JK, Boey HK. Non-invasive detection of significant coronary artery disease with multi-section computed tomography angiography in patients with suspected coronary artery disease. Clin Radiol. 2006;61: 174–180

    Article  CAS  PubMed  Google Scholar 

  5. Halon DA, Gaspar T, Adawi S, et al Uses and limitations of 40 slice multi-detector row spiral computed tomography for diagnosing coronary lesions in unselected patients referred for routine invasive coronary angiography. Cardiology. 2007;108:200–209

    Article  PubMed  Google Scholar 

  6. Watkins MW, Hesse B, Green CE, et al Detection of coronary artery stenosis using 40–channel computed tomography with multisegment reconstruction. Am J Cardiol. 2007;99:175–181

    Article  PubMed  Google Scholar 

  7. Grosse C, Globits S, Hergan K. Forty-slice spiral computed tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population. Acta Radiol. 2007;48:36–44

    Article  CAS  PubMed  Google Scholar 

  8. Ropers D, Rixe J, Anders K, et al Usefulness of multidetector row computed tomography with 64 x 0.6 mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol. 2006;97:343–348

    Article  PubMed  Google Scholar 

  9. Fine JJ, Hopkins CB, Ruff N, Newton FC. Comparison of accuracy of 64-slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease. Am J Cadiol. 2006;97:173–174

    Article  Google Scholar 

  10. Nikolaou K, Knez A, Rist C, et al Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR. 2006;187:111–117

    Article  PubMed  Google Scholar 

  11. Schlosser T, Mohrs OK, Magedanz A, et al Noninvasive coronary angiography using 64-detector-row computed tomography in patients with a low to moderate pretest probability of significant coronary artery disease. Acta Radiol. 2007;48:300–307

    Article  CAS  PubMed  Google Scholar 

  12. Mühlenbruch G, Seyfarth T, Soo CS, Pregalathan N, Mahnken AH. Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients. Eur Radiol. 2007;17:603–609

    Article  PubMed  Google Scholar 

  13. Meijboom WB, Mollet NR, Van Mieghem CA, et al 64-slice computed tomography coronary engiography in patients with non-ST elevation acute coronary syndrome. Heart. 2007;93:1386–1392

    Article  PubMed  Google Scholar 

  14. Herzog C, Zwerner PL, Doll JR, et al Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology. 2007;244: 112–120

    Article  PubMed  Google Scholar 

  15. Ehara M, Surmely JF, Kawai M, et al Diagnostic accuracy of 64–slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population. Circ J. 2007;70:564–571

    Article  Google Scholar 

  16. Hausleiter J, Meyer T, Hadamitzky M, et al Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter Resolution (CACTUS) trial. Eur Heart J. 2007;28:3034–3041

    Article  PubMed  Google Scholar 

  17. Shabestari AA, Abdi S, Akhlaghpoor S, et al Diagnostic performance of 64-channel multislice computed tomograohy in assessment of significant coronary artery disease in symptomatic subjects. Am J Cardiol. 2007;99:1656–1661

    Article  PubMed  Google Scholar 

  18. Scheffel H, Alkadhi H, Plass A, et al Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol. 2006;16: 2739–2747

    Article  PubMed  Google Scholar 

  19. Heuschmid M, Burgstahler C, Reimann A, et al Usefulness of noninvasive cardiac imaging using dual-source computed tomography in an unselected population with high prevalence of coronary artery disease. Am J Cardiol. 2007;100:587–592

    Article  PubMed  Google Scholar 

  20. Ropers U, Ropers D, Pflederer T, et al Influence of heart rate on the diagnostic accuracy of dual-source tomography computed angiography. J Am Coll Cardiol. 2007;50:2393–2398

    Article  PubMed  Google Scholar 

  21. Leber AW, Johnson T, Becker A, et al Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J. 2007;28:2354–2360

    Article  PubMed  Google Scholar 

  22. Weustink AC, Meijboom WB, Mollet NR, et al Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol. 2007;50:786–794

    Article  PubMed  Google Scholar 

  23. Alkadhi H, Scheffel H, Desbiolles L, et al Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J. 2008;29: 766–776

    Article  PubMed  Google Scholar 

  24. Hoffmann U, Moselewski F, Cury RC, et al Predictive value of 16–slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation. 2004;110:2638–2643

    Article  PubMed  Google Scholar 

  25. Gosthine S, Caussin C, Daoud B, et al Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol. 2006;48: 1929–1934

    Article  Google Scholar 

  26. Budoff MJ, Dowe D, Jollis JG, et al Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52: 1724–1732

    Article  PubMed  Google Scholar 

  27. Vanhoenacker PK, Heijenbrok–Kal MH, Van Heste R, et al Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology. 2007;244:419–428

    Article  PubMed  Google Scholar 

  28. Hamon M, Lepage O, Malagutti P, et al Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography - meta–analysis. Radiology. 2007;245:720–731

    Article  PubMed  Google Scholar 

  29. Abdulla J, Abildstrom SZ, Gotzsche O, Kober L, Torp-Pedersen C. 64-multislice detector computed tomography coronary angiography as a potential alternative to conventional coronary angiography: a systematic review. Eur Heart J. 2007;28:3042–3050

    Article  PubMed  Google Scholar 

  30. Gopalakrishnen P, Wolson GT, Tak K. Accuracy of multislice computed tomography coronary angiography: a pooled estimate. Cardiol Rev. 2008;16:189–196

    Article  Google Scholar 

  31. Mowatt G, Cook JA, Hillis GS, et al 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta–analysis. Heart. 2008;94: 1386–1393

    Article  CAS  PubMed  Google Scholar 

  32. Miller JM, Rochitte CE, Dewey M, et al Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359: 2324–2336

    Article  CAS  PubMed  Google Scholar 

  33. Meijboom WB, van Mieghem CA, Mollet NR, et al 64-Slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol. 2007;50:1469–1475

    Article  PubMed  Google Scholar 

  34. Danciu SC, Herrera CJ, Stecy PJ, Carell E, Saltiel F, Hines JL. Usefulness of multislice computed tomographic coronary angiography to identify patients with abnormal myocardial perfusion stress in whom diagnostic catheterization may be safely avoided. Am J Cardiol. 2007;100:1605–1608

    Article  PubMed  Google Scholar 

  35. Gilard M, Le Gal, G, Cornily JC, et al Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomography findings. A prospective management outcome study. Arch Intern Med. 2007;165:1686–1689

    Google Scholar 

  36. Lesser JR, Flygenring B, Knickelbine T, et al Clinical utility of coronary CT angiography: coronary stenosis detection and prognosis in ambulatory patients. Cath Cardiovasc Interv. 2007;69:64–72

    Article  Google Scholar 

  37. Min JK, Kang N, Shaw LJ, et al Costs and clinical outcomes after coronary multidetector CT angiography in patients without known coronary artery disease: comparison to myocardial perfusion SPECT. Radiology. 2008;249:62–70

    Article  PubMed  Google Scholar 

  38. Andreini D, Pontone G, Pepi M, et al Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2007;49: 2044–2450

    Article  PubMed  Google Scholar 

  39. Manghat NE, Morgan-Hughes GJ, Shaw SR, et al Multi-detector row CT coronary angiography in patients with cardiomyopathy - initial single-centre experience. Clin Radiol. 2007;62:632–638

    Article  CAS  PubMed  Google Scholar 

  40. Meijboom WB, Mollet NR, Van Mieghem CA, et al Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol. 2006;48:1658–1665

    Article  PubMed  Google Scholar 

  41. Scheffel H, Leschka S, Plass A, et al Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol. 2007;100:701–706

    Article  PubMed  Google Scholar 

  42. Hoffmann U, Nagurney JT, Moselewski F, et al Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation. 2006;114:2251–2260

    Article  PubMed  Google Scholar 

  43. Gallagher MJ, Ross MA, Raff GL, Goldstein JA, O’Neill WW, O’Neil B. The diagnostic accuracy of 64-slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients. Ann Emerg Med. 2007;49:125–136

    Article  PubMed  Google Scholar 

  44. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol. 2007;49:863–871

    Article  PubMed  Google Scholar 

  45. Coles DR, Wilde P, Oberhoff M, Rogers CA, Karsch KR, Baumbach A. Multislice computed tomography coronary angiography in patients admitted with a suspected acute coronary syndrome. Int J Cardiovasc Imaging. 2007;23:603–614

    Article  PubMed  Google Scholar 

  46. Chiurlia E, Menozzi M, Ratti C, Romagnoli R, Modena MG. Follow-up of coronary artery bypass graft patency by multislice computed tomography. Am J Cardiol. 2005;95:1094–1097

    Article  PubMed  Google Scholar 

  47. Salm LP, Bax JJ, Jukema JW, et al Comprehensive assessment of patients after coronary artery bypass grafting by 16-detector-row computed tomography. Am Heart J. 2005;150:775–781

    Article  PubMed  Google Scholar 

  48. Anders K, Baum U, Schmid M, et al Coronary artery bypass graft (CABG) patency: assessment with high-resolution submillimeter 16–slice multidetector-row computed tomography (MDCT) versus coronary angiography. Eur J Radiol. 2006;57:336–344

    Article  PubMed  Google Scholar 

  49. Ropers D, Pohle FK, Kuettner A, et al Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation. 2006;114:2334–2341

    Article  PubMed  Google Scholar 

  50. Meyer TS, Martinoff S, Hadamitzky M, et al Improved noninvasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49:946–950

    Article  PubMed  Google Scholar 

  51. Feuchtner GM, Schachner T, Bonatti J, et al Diagnostic performance of 64-slice computed tomography in evaluation of coronary artery bypass grafts. AJR Am J Roentgenol. 2007;189(3):574–580

    Article  PubMed  Google Scholar 

  52. Maintz D, Seifarth H, Raupach R, et al 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol. 2006;16:818–826

    Article  PubMed  Google Scholar 

  53. Van Mieghem CA, Cademartiri F, Mollet NR, et al Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation. 2006;114:645–653

    Article  PubMed  Google Scholar 

  54. Rixe J, Achenbach S, Ropers D, et al Assessment of coronary artery stent restenosis by 64–slice multi-detector computed tomography. Eur Heart J. 2006;27:2567–2572

    Article  PubMed  Google Scholar 

  55. Oncel D, Oncel G, Karaca M. Coronary stent patency and in-stent restenosis: determination with 64-section multidetector CT ­coronary angiography - initial experience. Radiology. 2007;242:403–409

    Article  PubMed  Google Scholar 

  56. Ehara M, Kawai M, Surmely JF, et al Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography. J Am Coll Cardiol. 2007;49:951–959

    Article  PubMed  Google Scholar 

  57. Cademartiri F, Schuijf JD, Pugliese F, et al Usefulness of 64-slice multislice computed tomography coronary angiography to assess in–stent restenosis. J Am Coll Cardiol. 2007;49:2204–2210

    Article  PubMed  Google Scholar 

  58. Vanhoenacker PK, Decramer I, Bladt O, et al Multidetector computed tomography angiography for assessment of in-stent restenosis: meta–analysis of diagnostic performance. BMC Med Imaging. 2008;8:14

    Article  PubMed  Google Scholar 

  59. Schuijf JD, Wijns W, Jukema JW, et al Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol. 2006; 48:2508–2514

    Article  PubMed  Google Scholar 

  60. Hacker M, Jakobs T, Hack N, et al Combined use of 64-slice computed tomography angiography and gated myocardial perfusion SPECT for the detection of functionally relevant coronary artery stenoses. First results in a clinical setting concerning patients with stable angina. Nuklearmedizin. 2007;46:29–35

    CAS  PubMed  Google Scholar 

  61. Hacker M, Jakobs T, Hack N, et al Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging. 2007;34:4–10

    Article  PubMed  Google Scholar 

  62. Berman DS, Hachamovitch R, Shaw LJ, et al Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: Noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J Nucl Med. 2006;47: 1107–1118

    PubMed  Google Scholar 

  63. Bluemke DA, Achenbach S, Budoff M, et al Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention, and the Councils on Clinical Cardiology and Cardiovascular Disease in the Young. Circulation. 2008;118: 586–606

    Article  PubMed  Google Scholar 

  64. Schroeder S, Achenbach S, Bengel F, et al Cardiac computed tomography: indications, applications, limitations, and training requirements: Report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J. 2008;29:531–556

    Article  PubMed  Google Scholar 

  65. Hendel RC, Patel MR, Kramer CM, et al ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48:1475–1497

    Article  PubMed  Google Scholar 

  66. McClelland RL, Chung H, Detrano R, Post W, Kronmal RA. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2006;113:30–37

    Article  PubMed  Google Scholar 

  67. Amann K, Tyralla K, Gross ML, Eifert T, Adamczak M, Ritz E. Special characteristics of atherosclerosis in chronic renal failure. Clin Nephrol. 2003;60(suppl 1):S13–S21

    PubMed  Google Scholar 

  68. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92:2157–2162

    CAS  Google Scholar 

  69. Schmermund A, Erbel R. Unstable coronary plaque and its relation to coronary calcium. Circulation. 2001;104:1682–1687

    Article  CAS  PubMed  Google Scholar 

  70. Greenland P, Bonow RO, Brundage BH, et al ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation. 2007;115:402–426

    Article  PubMed  Google Scholar 

  71. Budoff MJ, Achenbach S, Blumenthal RS, et al Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006;114:1761–1791

    Article  PubMed  Google Scholar 

  72. Raggi P, Callister TQ, Cooil B, et al: Identification of patients at increased risk of first unheralded acute myocardial infarction by electron–beam computed tomography. Circulation. 2000;101: 850–855

    CAS  PubMed  Google Scholar 

  73. Arad Y, Spadaro LA, Goodman K, et al Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol. 2000;36:1253–1258

    Article  CAS  PubMed  Google Scholar 

  74. Park R, Detrano R, Xiang M, et al: Combined use of computed tomography coronary calcium scores and C-reactive protein levels in predicting cardiovascular events in nondiabetic individuals. Circulation. 2002;106:2073–2075

    Article  CAS  PubMed  Google Scholar 

  75. Vliegenthart R, Oudkerk M, Song B, et al Coronary calcification detected by electron-beam computed tomography and myocardial infarction. The Rotterdam Coronary Calcification Study. Eur Heart J. 2002;23:1596

    Article  CAS  PubMed  Google Scholar 

  76. Wong ND, Hsu JC, Detrano RC, et al Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol. 2000;86:495

    Article  CAS  PubMed  Google Scholar 

  77. Kondos GT, Hoff JA, Sevrukov A, et al Electron-beam tomography coronary artery calcium and coronary events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107:2571–2574

    Article  PubMed  Google Scholar 

  78. Taylor AJ, Bindeman J, Feuerstein I, et al Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol. 2005;46:807–814

    Article  CAS  PubMed  Google Scholar 

  79. Greenland P, LaBree L, Azen SP, et al Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291:210–215

    Article  CAS  PubMed  Google Scholar 

  80. Arad Y, Goodman KJ, Roth M, et al Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol. 2005;46:158–165

    Article  CAS  PubMed  Google Scholar 

  81. O’Malley PG, Taylor AJ, Jackson JL, et al Prognostic value of coronary electron–beam computed tomography for coronary heart disease events in asymptomatic patients. Am J Cardiol. 2000;85:945

    Article  PubMed  Google Scholar 

  82. Becker A, Leber A, Becker C, Knez A. Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals Am Heart J. 2008;155:154–160

    Article  PubMed  Google Scholar 

  83. Detrano R, Guerci AD, Carr JJ, et al Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–1345

    Article  CAS  PubMed  Google Scholar 

  84. Raggi P, Callister TQ, Shaw LJ. Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol–lowering therapy. Arterioscler Thromb Vasc Biol. 2004;24:1272–1277

    Article  CAS  PubMed  Google Scholar 

  85. Callister TQ, Raggi P, Cooil B, et al Effect of HmG-CoA reductase inhibitors on coronary artery disease as assessed by electron–beam computed tomography. N Engl J Med. 1998;339:1972–1977

    Article  CAS  PubMed  Google Scholar 

  86. Achenbach S, Ropers D, Pohle K, et al Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation. 2002;106:1077–1081

    Article  CAS  PubMed  Google Scholar 

  87. Budoff MJ, Lane KL, Bakhsheshi H, et al Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol. 2000;86:8–12

    Article  CAS  PubMed  Google Scholar 

  88. Schmermund A, Achenbach S, Budde T, et al Effect of intensive versus standard lipid-lowering treatment with atorvastatin on the progression of calcified coronary atherosclerosis over 12 months: a multicenter, randomized, double-blind trial. Circulation. 2000; 113:427–437

    Article  CAS  Google Scholar 

  89. Arad Y, Spadaro LA, Roth M, et al Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial. J Am Coll Cardiol. 2005;46:166–172

    CAS  Google Scholar 

  90. Achenbach S, Moselewski F, Ropers D, et al Detection of calcified and coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109:14–17

    Article  PubMed  Google Scholar 

  91. Leber AW, Knez A, Becker A, et al Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol. 2004;43: 1241–1247

    Article  PubMed  Google Scholar 

  92. Leber AW, Becker A, Knez A, et al Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol. 2006;47:672–627

    Article  PubMed  Google Scholar 

  93. Schroeder S, Kopp AF, Baumbach A, et al Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol. 2001;37:1430–1435

    Article  CAS  PubMed  Google Scholar 

  94. Caussin C, Ohanessian A, Ghostine S, et al Characterization of vulnerable nonstenotic plaque with 16-slice computed tomography compared with intravascular ultrasound. Am J Cardiol. 2004;94:99–100

    Article  PubMed  Google Scholar 

  95. Carrascosa PM, Capunay CM, Garcia-Merletti P, Carrascosa J, Garcia MF. Characterization of coronary atherosclerotic plaques by multidetector computed tomography. Am J Cardiol. 2006;97: 598–602

    Article  PubMed  Google Scholar 

  96. Pohle K, Achenbach S, MacNeill B, et al Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis. 2007;190:174–180

    Article  CAS  PubMed  Google Scholar 

  97. Cademartiri F, Mollet NR, Runza G, et al Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol. 2005; 15:1426–1431

    Article  PubMed  Google Scholar 

  98. Achenbach S, Ropers D, Hoffmann U, et al Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43:842–847

    Article  PubMed  Google Scholar 

  99. Moselewski F, Ropers D, Pohle K, et al Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multidetector computed tomography versus intravascular ultrasound. Am J Cardiol. 2004;94:1294–1297

    Article  PubMed  Google Scholar 

  100. Bruining N, Roelandt JR, Palumbo A, et al Reproducible coronary plaque quantification by multislice computed tomography. Catheter Cardiovasc Interv. 2007;69:857–865

    Article  PubMed  Google Scholar 

  101. Min JK, Shaw LJ, Devereix RB, et al Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50: 1161–1170

    Article  PubMed  Google Scholar 

  102. Choi EK, Choi SI, Rivera JJ, et al Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol. 2008;52:357–365

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Achenbach MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited Limited

About this chapter

Cite this chapter

Achenbach, S., de Feyter, P.J. (2010). Cardiac CT and Detection of Coronary Artery Disease. In: Zamorano, J.L., Bax, J.J., Rademakers, F.E., Knuuti, J. (eds) The ESC Textbook of Cardiovascular Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-421-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-421-8_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-420-1

  • Online ISBN: 978-1-84882-421-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics