Skip to main content
  • 2810 Accesses

Abstract

Starting from the late 1960s, computer simulation has contributed enormously towards new evaluation and development of internal combustion engines [see for example, 1–6]. Mathematical tools have become very popular in recent years owing to the continuously increasing improvement in computational power. In order to construct a simulation model, careful observation of the problem and its side effects is initially required (Figure 9.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horlock JH, Winterbone DE. The thermodynamics and gas dynamics of internal combustion engines, Vol. II. Oxford: Clarendon Press, 1986.

    Google Scholar 

  2. Watson N, Janota MS. Turbocharging the internal combustion engine. London: MacMillan, 1982.

    Google Scholar 

  3. Heywood JB. Internal combustion engine fundamentals. New York: McGraw-Hill, 1988.

    Google Scholar 

  4. Benson RS, Whitehouse ND. Internal combustion engines. Oxford: Pergamon Press, 1979.

    Google Scholar 

  5. Stone R. Introduction to internal combustion engines, 3rd edition. London: MacMillan, 1999.

    Google Scholar 

  6. Ferguson CR, Kirkpatrick AT. Internal combustion engines: applied thermosciences, 2nd edition. New York: Wiley, 2001.

    Google Scholar 

  7. Ledger JD, Walmsley S. Computer simulation of a turbocharged diesel engine operating under transient load conditions. SAE Paper No. 710177, 1971.

    Google Scholar 

  8. Winterbone DE, Benson RS, Closs GD, Mortimer AG. A comparison between experimental and analytical transient test results for a turbocharged diesel engine. Proc Inst Mech Eng 1976;190:267–76.

    Article  Google Scholar 

  9. Benson RS, Ledger JD, Whitehouse ND, Walmsley S. Comparison of experimental and simulated transient responses of a turbocharged diesel engine. SAE Paper No. 730666, 1973.

    Google Scholar 

  10. Jensen J-P, Kristensen AF, Sorenson SC, Houbak N, Hendricks E. Mean value modeling of a small turbocharged diesel engine. SAE Paper No. 910070, 1991.

    Google Scholar 

  11. Berglund S. A model of turbocharged engines as dynamic drivetrain members. SAE Paper No. 933050, 1993.

    Google Scholar 

  12. Younes R, Champoussin JC, Liazid A. Modeling of turbocharged diesel engine for optimal control. Entropie 1993;174/175:31–42 (in French).

    Google Scholar 

  13. Jennings MJ, Blumberg PN, Amann RW. A dynamic simulation of the Detroit diesel electronic control system in heavy duty truck powertrains. SAE Paper No. 861959, 1986.

    Google Scholar 

  14. Rackmil CI, Blumberg PN, Becker DA, Schuller RR, Garvey DC. A dynamic model of a locomotive diesel engine and electrohydraulic governor. ASME Trans, J Eng Gas Turbines Power 1988;110:405–14.

    Google Scholar 

  15. JANAF thermochemical tables, 2nd edition. NSRDS-NBS37, US National Bureau of Standards, 1971.

    Google Scholar 

  16. Gordon S, McBride BJ. Computer program for calculation of complex chemical equilibrium composition, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations. NASA publication SP-273, 1971.

    Google Scholar 

  17. Rakopoulos CD, Rakopoulos DC, Giakoumis EG, Kyritsis DC. Validation and sensitivity analysis of a two zone diesel engine model for combustion and emissions prediction. Energy Convers Manage 2004;45:1471–95.

    Article  Google Scholar 

  18. Arai M, Tabata M, Hiroyasu H, Shimizu M. Disintegrating process and spray characterization of fuel jet injected by a Diesel nozzle. SAE Paper No. 840275, 1984.

    Google Scholar 

  19. Annand WJD. Heat transfer in the cylinders of reciprocating internal combustion engines. Proc Inst Mech Eng 1963;177:973–90.

    Article  Google Scholar 

  20. Woschni G. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE paper No. 670931, 1967.

    Google Scholar 

  21. Hohenberg GF. Advanced approaches for heat transfer calculations. SAE Paper No. 790825, 1979.

    Google Scholar 

  22. Annand WJD, Ma TH. Instantaneous heat transfer rates to the cylinder head surface of a small compression-ignition engine. Proc Inst Mech Eng 1970-71;185:976–87.

    Google Scholar 

  23. Watson N. Dynamic turbocharged diesel engine simulator for electronic control system development. ASME Trans, J Dynamic Syst Measurement Control 1984;106:27–45.

    Article  Google Scholar 

  24. Rakopoulos CD, Giakoumis EG. Study of the transient operation of low-heat rejection turbocharged diesel engine including wall temperature oscillations. SAE Paper No. 2007-01-1091, 2007.

    Google Scholar 

  25. Wiebe I. Halbempirische formel fuer die Verbrennungsgeschwindigkeit. Moscow: Verlag der Akademie der Wissenschaften der UdSSR, 1967.

    Google Scholar 

  26. Watson N, Pilley AD, Marzouk M. A combustion correlation for diesel engine simulation. SAE paper No. 800029, 1980.

    Google Scholar 

  27. Whitehouse ND, Way RGB. Rate of heat release in diesel engines and its correlation with fuel injection data. Proc Inst Mech Eng 1969-70; 3J(184):17–27.

    Google Scholar 

  28. Bazari Z. A DI diesel combustion and emission predictive capability for use in cycle simulation. SAE Paper No. 920462, 1992.

    Google Scholar 

  29. Woschni G, Anisits F. Eine Methode zur Vorausberechnung der Änderung des Brennverlaufs mittelschnelllaufender Dieselmotoren bei geänderten Betriebsbedingungen. MTZ 1973;34:106–15.

    Google Scholar 

  30. Betz A, Woschni G. Energy conversion rate and rate of heat release of turbocharged diesel engines under transient conditions. MTZ 1986;47:263–7 (in German).

    Google Scholar 

  31. Assanis DN, Filipi ZS, Fiveland SB, Syrimis M. A predictive ignition delay correlation under steady-state and transient operation of a direct injection diesel engine. ASME Trans, J Eng Gas Turbines Power 2003;125:450–7.

    Article  Google Scholar 

  32. Rakopoulos CD, Giakoumis EG, Hountalas DT, Rakopoulos DC. The effect of various dynamic, thermodynamic and design parameters on the performance of a turbocharged diesel engine operating under transient load conditions. SAE Paper No. 2004-01-0926, 2004.

    Google Scholar 

  33. Hiroyasu H, Kadota T, Arai M. Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions. Bulletin JSME 1983;26:569–75.

    Google Scholar 

  34. Rakopoulos CD, Giakoumis EG. Review of thermodynamic diesel engine simulations under transient operating conditions. SAE Paper No. 2006-01-0884, SAE Trans, J Engines 2006;115:467–505.

    Google Scholar 

  35. Ertl C, Kranawetter E, Stütz W. Simulation of the dynamic behavior of diesel engines with electronic management system. MTZ 1997;58:612–8 (in German).

    Google Scholar 

  36. Lin C-C, Filipi Z, Louca L, Peng H, Assanis D, Stein J. Modelling and control of a medium-duty hybrid electric truck. Int J Heavy Vehicle Syst 2004;11:349–71.

    Article  Google Scholar 

  37. Rakopoulos CD, Michos CN, Giakoumis EG. Study of the transient behavior of turbocharged diesel engines including compressor surging using a linearized quasisteady analysis. SAE Paper No. 2005-01-0225, 2005.

    Google Scholar 

  38. Watson N. Transient performance simulation and analysis of turbocharged diesel engines. SAE Paper No. 810338, 1981.

    Google Scholar 

  39. Rakopoulos CD, Giakoumis EG. Sensitivity analysis of transient diesel engine simulation. Proc Inst Mech Eng, Part D, J Automobile Eng 2006;220:89–101.

    Google Scholar 

  40. Moraal P, Kolmanovksy IV. Turbocharger modeling for automotive control applications. SAE Paper No. 1999-01-0908, 1999.

    Google Scholar 

  41. Fink DA, Cumpsty NA, Greitzer EM. Surge dynamics in a free-spool centrifugal compressor system. ASME Trans, J Turbomachinery 1992;114:321–32.

    Article  Google Scholar 

  42. Filipi Z, Wang Y, Assanis D. Effect of variable geometry turbine (VGT) on diesel engine and vehicle system transient response. SAE Paper No. 2001-01-1247, 2001.

    Google Scholar 

  43. Jung M, Ford RG, Glover K, Collings N, Christen U, Watts MJ. Parameterization and transient validation of a variable geometry turbocharger for mean-value modeling at low and medium speed-load points. SAE Paper No. 2002-01-2729, 2002.

    Google Scholar 

  44. Shamsi SS. Development of a real-time digital computer simulation of a turbocharged diesel engine. SAE Paper No. 800521, 1980.

    Google Scholar 

  45. Schorn N, Pischinger F, Schulte H. Computer simulation of turbocharged diesel engines under transient conditions. SAE Paper No. 870723, 1987.

    Google Scholar 

  46. Moore FK, Greitzer EM. A theory of post-stall transients in axial compression systems. Part I: development of equations. ASME Trans, J Eng Gas Turbines Power 1986;108:68–76.

    Article  Google Scholar 

  47. Botros KK. Transient phenomena in compressor stations during surge. ASME Trans, J Eng Gas Turbines Power 1994;116:133–42.

    Article  Google Scholar 

  48. Hansen KE, Jørgensen P, Larsen PS. Experimental and theoretical study of surge in a small centrifugal compressor. ASME Trans, J Fluids Eng 1981;103:391–5.

    Google Scholar 

  49. Rezeka SF, Henein NA. A new approach to evaluate instantaneous friction and its components in internal combustion engines. SAE Paper No. 840179, 1984.

    Google Scholar 

  50. Tuccilo R, Arnone L, Bozza F, Nocera R, Senatore A. Experimental correlations for heat release and mechanical losses in turbocharged diesel engines. SAE Paper No. 932459, 1993.

    Google Scholar 

  51. Cameron A, Ettles CCMc. Basic lubrication theory, 3rd edition. Chichester: Ellis Horwood, 1981.

    Google Scholar 

  52. Winterbone DE, Loo WY. A dynamic simulation of a two-stroke turbocharged diesel engine. SAE Paper No. 810337, 1981.

    Google Scholar 

  53. Winterbone DE, Tennant DWH. The variation of friction and combustion rates during diesel engine transients. SAE Paper No. 810339, 1981.

    Google Scholar 

  54. Rakopoulos CD, Hountalas DT. A simulation analysis of a DI diesel engine fuel injection system fitted with a constant pressure valve. Energy Convers Manage 1996;37:135–50.

    Article  Google Scholar 

  55. Watson N, Marzouk M. A non-linear digital simulation of turbocharged diesel engines under transient conditions. SAE Paper No. 770123, 1977.

    Google Scholar 

  56. Qiao J, Dent JC, Garner CP. Diesel engine modelling under steady and transient conditions using a transputer based concurrent computer. SAE Paper No. 922226, 1992.

    Google Scholar 

  57. Jiang Q, Van Gerpen JH. Prediction of diesel engine particulate emission during transient cycles. SAE Paper No. 920466, 1992.

    Google Scholar 

  58. Brace CJ, Deacon M, Vaughan ND, Charlton SJ, Burrows CR. Prediction of emissions from a turbocharged passenger car diesel engine using a neural network. Institution of Mechanical Engineers, 5th International Conference on ‘Turbocharging and Turbochargers’, Paper C484/046, London, 1994, pp. 83–91.

    Google Scholar 

  59. Ericson C, Westerberg B, Egnell R. Transient emission predictions with quasi stationary models. SAE Paper No. 2005-01-3852, 2005.

    Google Scholar 

  60. Lavoie GA, Heywood JB, Keck JC. Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combust Sci Technol 1970;1:313–26.

    Article  Google Scholar 

  61. Lipkea WH, DeJoode AD. Direct injection diesel engine soot modeling: formulation and results. SAE Paper No. 940670, 1994.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Modeling. In: Diesel Engine Transient Operation. Springer, London. https://doi.org/10.1007/978-1-84882-375-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-375-4_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-374-7

  • Online ISBN: 978-1-84882-375-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics