Skip to main content

Assessment of the Human Coronary Collateral Circulation

  • Chapter
  • First Online:
Collateral Circulation of the Heart
  • 899 Accesses

The reference method for coronary blood flow measurements in the experimental animal model is the microsphere indicator deposition method. The principle of deposition methods is that the microsphere deposition is proportional to the flow per unit mass of tissue. Using microsphere methods and small myocardial pieces, regional flow values vary considerably between one-third and twice the average flow. This fractal vascular tree geometry is present throughout the plant and animal world, and its conservation across species is thought to be due to evolutionary advantages conferred through efficient distribution of nutrients. In that context, the coronary artery tree is structured according to the law of minimum viscous energy loss during the transport of blood, a design which principally accounts also for the option of intercoronary anastomoses. The collateral circulation is a major determinant of myocardial infarct size (IS) reduction in case of a coronary occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

area at risk for myocardial infarction

C:

vascular conductance (ml/min/mmHg)

C coll :

collateral conductance

C myo :

myocardial conductance

C s :

stenosis conductance

CAD:

coronary artery disease

CPI:

collateral perfusion index

IS:

infarct size

L:

regional coronary artery branchlength (cm)

LAD:

left anterior descending coronary artery

LCA:

left coronary artery

LCX:

left circumflex coronary artery

L tot :

total summed coronary artery branchlength (cm)

LV:

left ventricle

M:

regional myocardial mass (g)

MCE:

myocardial contrast echocardiography

MR:

magnetic resonance imaging

M tot :

total myocardial mass (g)

Q:

coronary blood flow rate (ml/min)

P ao :

aortic pressure (mmHg)

P d :

distal coronary pressure (mmHg)

PET:

positron emission tomography

P occl :

distal coronary occlusive or wedge pressure (mmHg)

PCI:

percutaneous coronary intervention

R:

vascular resistance (mmHg/ml/min)

R m :

microvascular resistance (mmHg/ml/min)

RCA:

right coronary artery

SPECT:

single photon emission computer tomography

References

  1. Helfant RH, Vokonas PS, Gorlin R. Functional importance of the human coronary collateral circulation. N Engl J Med. 1971;284:1277–1281.

    PubMed  CAS  Google Scholar 

  2. Seiler C. The human coronary collateral circulation. Heart. 2003;89:1352–1357.

    PubMed  Google Scholar 

  3. Fujita M, Tambara K. Recent insights into human coronary collateral development. Heart. 2004;90:246–250.

    PubMed  CAS  Google Scholar 

  4. Prinzen F, Bassingthwaighte J. Blood flow distributions by microsphere deposition methods. Cardiovasc Res. 2000;45:13–21.

    PubMed  CAS  Google Scholar 

  5. Utley J, Carlson E, Hoffman J, Martinez H, Buckberg G. Total and regional myocardial blood flow measurements with 25 micron, 15 micron, 9 micron, and filtered 1–10 micron diameter microspheres and antipyrine in dogs and sheep. Circ Res. 1974;33:391–405.

    Google Scholar 

  6. Rudolph A, Heymann M. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res. 1967;21:163–184.

    PubMed  CAS  Google Scholar 

  7. Hale S, Vivaldi M, Kloner R. Fluorescent microspheres: a new tool for visualization of ischemic myocardium in rats. Am J Physiol. 1986;251:H863–H868.

    PubMed  CAS  Google Scholar 

  8. Glenny R, Bernard S, Brinkley M. Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol. 1993;74:2585–2597.

    PubMed  CAS  Google Scholar 

  9. Bassingthwaighte J, King R, Roger S. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res. 1989;65:578–590.

    PubMed  CAS  Google Scholar 

  10. Kleiber M. Body size and metabolism. Hilgardia. 1932;6:315–353.

    CAS  Google Scholar 

  11. Weibel E. Early stages in the development of collateral circulation to the lung in the rat. Circ Res. 1960;8:353–376.

    PubMed  CAS  Google Scholar 

  12. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122–126.

    PubMed  CAS  Google Scholar 

  13. West G, Brown J. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol. 2005;208:1575–1592.

    PubMed  Google Scholar 

  14. Glenny R, Bernard S, Neradilek B, Polissar N. Quantifying the genetic influence on mammalian vascular tree structure. Proc Natl Acad Sci USA. 2007;104:6858–6863.

    PubMed  CAS  Google Scholar 

  15. Seiler C, Kirkeeide RL, Gould KL. Basic structure-function relations of the epicardial coronary vascular tree. Basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation. 1992;85:1987–2003.

    PubMed  CAS  Google Scholar 

  16. Maroko P, Kjekshus J, Sobel B, et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971;43:67–82.

    PubMed  CAS  Google Scholar 

  17. Murray C. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA. 1926;12:207–214.

    Google Scholar 

  18. Murray C. The physiological principle of minimum work: II. Oxygen exchange in capillaries. Proc Natl Acad Sci USA. 1926;12:299–304.

    PubMed  CAS  Google Scholar 

  19. Bergmann S, Herrero P, Markham J, Weinheimer C, Walsh M. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989;14:639–652.

    Google Scholar 

  20. Chareonthaitawee P, Kaufmann P, Rimoldi O, Camici P. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res. 2001;50:151–161.

    PubMed  CAS  Google Scholar 

  21. Vogel R, Indermuhle A, Reinhardt J, et al. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol. 2005;45:754–762.

    PubMed  Google Scholar 

  22. Kucher N, Lipp E, Schwerzmann M, Zimmerli M, Allemann Y, Seiler C. Gender differences in coronary artery size per 100 g of left ventricular mass in a population without cardiac disease. Swiss Med Wkly. 2001;131:610–615.

    PubMed  CAS  Google Scholar 

  23. Windecker S, Allemann Y, Billinger M, et al. Effect of endurance training on coronary artery size and function in healthy men: an invasive followup study. Am J Physiol Heart Circ Physiol. 2002;282:H2216–H2223.

    PubMed  CAS  Google Scholar 

  24. Seiler C, Kirkeeide R, Gould K. Measurement from arteriograms of regional myocardial bed size distal to any point in the coronary vascular tree for assessing anatomic area at risk. J Am Coll Cardiol. 1993;21:783–797.

    PubMed  CAS  Google Scholar 

  25. Cohnheim J, von Schulthess-Rechberg A. Ueber die Folgen der Kranzarterienverschliessung für das Herz. Virchows Arch. 1881;85:503–537.

    Google Scholar 

  26. Pitt B. Interarterial coronary anastomoses. Occurence in normal hearts and in certain pathologic conditions. Circulation. 1959;20:816–822.

    PubMed  CAS  Google Scholar 

  27. Wustmann K, Zbinden S, Windecker S, Meier B, Seiler C. Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries? Circulation. 2003;107:2213–2220.

    PubMed  Google Scholar 

  28. Dole W. Autoregulation of the coronary circulation. Prog Cardiovasc Dis. 1987;29:293–323.

    PubMed  CAS  Google Scholar 

  29. Olsson R. Myocardial reactive hyperemia. Circ Res. 1975;37:263–270.

    PubMed  CAS  Google Scholar 

  30. Laxson D, Homans D, Bache R. Inhibition of adenosine-mediated coronary vasodilatation exacerbates myocardial ischemia during exercise. Am J Physiol. 1993;265:H1471–H1477.

    PubMed  CAS  Google Scholar 

  31. Heberden W. Commentaries on the history and cure of diseases. In: Wilius F, Kays T, eds. Classics of Cardiology. New York: Dover; 1961:220–224.

    Google Scholar 

  32. Birnbaum Y, Kloner R. Percutaneous transluminal coronary angioplasty as a model of ischemic preconditioning and preconditioning-mimetic drugs. J Am Coll Cardiol. 1999;33:1036–1039.

    PubMed  CAS  Google Scholar 

  33. Hillis L, Askenazi J, Braunwald E, et al. Use of changes in the epicardial QRS complex to assess interventions which modify the extent of myocardial necrosis following coronary artery occlusion. Circulation. 1976;54:591–598.

    PubMed  CAS  Google Scholar 

  34. Guo X, Yap Y, Chen L, Huang J, Camm A. Correlation of coronary angiography with “tombstoning” electrocardiographic pattern in patients after acute myocardial infarction. Clin Cardiol. 2000;23:347–352.

    PubMed  CAS  Google Scholar 

  35. Sobel B, Bresnahan G, Shell W, Yoder R. Estimation of infarct size in man and its relation to prognosis. Circulation. 1972;46:640–647.

    PubMed  CAS  Google Scholar 

  36. Reimer K, Jennings R. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest. 1979;40:633–644.

    PubMed  CAS  Google Scholar 

  37. Schaper W, Frenzel H, Hort W. Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol. 1979;74:46–53.

    PubMed  CAS  Google Scholar 

  38. Ortiz-Perez J, Meyers S, Lee D, et al. Angiographic estimates of myocardium at risk during acute myocardial infarction: validation study using cardiac magnetic resonance imaging. Eur Heart J. 2007;28:1750–1758.

    PubMed  Google Scholar 

  39. Rentrop K, Cohen M, Blanke H, Phillips R. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol. 1985;5:587–592.

    PubMed  CAS  Google Scholar 

  40. Bourassa M, Roubin G, Detre K, et al. Bypass Angioplasty Revascularization Investigation: patient screening, selection, and recruitment. Am J Cardiol. 1995;75:3C–8C.

    PubMed  CAS  Google Scholar 

  41. Pohl T, Hochstrasser P, Billinger M, Fleisch M, Meier B, Seiler C. Influence on collateral flow of recanalising chronic total coronary occlusions: a case-control study. Heart. 2001;86:438–443.

    PubMed  CAS  Google Scholar 

  42. Lee CW, Park SW, Cho GY, Hong MK, Kim JJ, Kang DH, Song JK, Lee HJ, Park SJ. Pressure-derived fractional collateral blood flow: a primary determinant of left ventricular recovery after reperfused acute myocardial infarction. J Am Coll Cardiol. 2000;35:949–955.

    PubMed  CAS  Google Scholar 

  43. Billinger M, Fleisch M, Eberli FR, Garachemani AR, Meier B, Seiler C. Is the development of myocardial tolerance to repeated ischemia in humans due to preconditioning or to collateral recruitment? J Am Coll Cardiol. 1999;33:1027–1035.

    PubMed  CAS  Google Scholar 

  44. Murry C, Jennings R, Reimer K. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136.

    PubMed  CAS  Google Scholar 

  45. Lambiase PD, Edwards RJ, Cusack MR, Bucknall CA, Redwood SR, Marber MS. Exercise-induced ischemia initiates the second window of protection in humans independent of collateral recruitment. J Am Coll Cardiol. 2003;41:1174–1182.

    PubMed  Google Scholar 

  46. Hausenloy D, Yellon D. The evolving story of “conditioning” to protect against acute myocardial ischaemia-reperfusion injury. Heart. 2007;93:649–651.

    PubMed  Google Scholar 

  47. Lim S, Davidson S, Hausenloy D, Yellon D. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007;75:530–535.

    PubMed  CAS  Google Scholar 

  48. MacAlpin R, Weidner W, Kattus AJ, Hanafee W. Electrocardiographic changes during selective coronary cineangiography. Circulation. 1966;34:627–637.

    PubMed  CAS  Google Scholar 

  49. Dupouy P, Geschwind H, Pelle G, et al. Repeated coronary artery occlusions during routine balloon angioplasty do not induce myocardial preconditioning in humans. J Am Coll Cardiol. 1996;27:1374–1380.

    PubMed  CAS  Google Scholar 

  50. Tomai F. Warm up phenomenon and preconditioning in clinical practice. Heart. 2002;87:99–100.

    PubMed  CAS  Google Scholar 

  51. Leesar M, Jneid H, Tang X, Bolli R. Pretreatment with intracoronary enalaprilat protects human myocardium during percutaneous coronary angioplasty. J Am Coll Cardiol. 2007;49:1607–1610.

    PubMed  CAS  Google Scholar 

  52. Leesar M, Stoddard M, Ahmed M, Broadbent J, Bolli R. Preconditioning of human myocardium with adenosine during coronary angioplasty. Circulation. 1997;95:2500–2507.

    PubMed  CAS  Google Scholar 

  53. Piek JJ, Koolen JJ, Hoedemaker G, David GK, Visser CA, Dunning AJ. Severity of single-vessel coronary arterial stenosis and duration of angina as determinants of recruitable collateral vessels during balloon occlusion. Am J Cardiol. 1991;67:13–17.

    PubMed  CAS  Google Scholar 

  54. Pohl T, Seiler C, Billinger M, et al. Frequency distribution of collateral flow and factors influencing collateral channel development. Functional collateral channel measurement in 450 patients with coronary artery disease. J Am Coll Cardiol. 2001;38:1872–1878.

    PubMed  CAS  Google Scholar 

  55. Piek J, van Liebergen R, Koch K, Peters R, David G. Comparison of collateral vascular responses in the donor and recipient coronary artery during transient coronary occlusion assessed by intracoronary blood flow velocity analysis in patients. J Am Coll Cardiol. 1997;29:1528–1535.

    PubMed  CAS  Google Scholar 

  56. Iwata S, Hozumi T, Matsumura Y, et al. Cut-off value of coronary flow velocity reserve by transthoracic Doppler echocardiography for the assessment of significant donor left anterior descending artery stenosis in patients with spontaneously visible collaterals. Am J Cardiol. 2006;98:298–302.

    PubMed  Google Scholar 

  57. Garza D, White F, Hall R, Bloor C. Effect of coronary collateral development on ventricular fibrillation threshold. Basic Res Cardiol. 1974;69:371–378.

    PubMed  CAS  Google Scholar 

  58. Wright A, Hudlicka O. Capillary growth and changes in heart performance induced by chronic bradycardial pacing in the rabbit. Circ Res. 1981;49:469–478.

    PubMed  CAS  Google Scholar 

  59. Brown M, Davies M, Hudlicka O. Angiogenesis in ischaemic and hypertrophic hearts induced by long-term bradycardia. Angiogenesis. 2005;8:253–262.

    PubMed  CAS  Google Scholar 

  60. Zheng W, Brown M, Brock T, Bjercke R, Tomanek R. Bradycardia-induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res. 1999;85:192–198.

    PubMed  CAS  Google Scholar 

  61. Hudlicka O. Mechanical factors involved in the growth of the heart and its blood vessels. Cell Mol Biol Res. 1994;40:143–152.

    PubMed  CAS  Google Scholar 

  62. Patel S, Breall J, Diver D, Gersh B, Levy A. Bradycardia is associated with development of coronary collateral vessels in humans. Coron Artery Dis. 2000;11:467–472.

    PubMed  CAS  Google Scholar 

  63. Turakhia M, Tseng Z. Sudden cardiac death: epidemiology, mechanisms, and therapy. Curr Probl Cardiol. 2007;32:501–546.

    PubMed  Google Scholar 

  64. Airaksinen K, Ikaheimo M, Huikuri HV. Stenosis severity and the occurrence of ventricular ectopic activity during acute coronary occlusion during balloon angioplasty. Am J Cardiol. 1995;76:346–349.

    PubMed  CAS  Google Scholar 

  65. Gheeraert P, Henriques J, De Buyzere M, et al. Out-of-hospital ventricular fibrillation in patients with acute myocardial infarction: coronary angiographic determinants. J Am Coll Cardiol. 2000;35:144–150.

    PubMed  CAS  Google Scholar 

  66. Gheeraert P, De Buyzere M, Taeymans Y, et al. Risk factors for primary ventricular fibrillation during acute myocardial infarction: a systematic review and meta-analysis. Eur Heart J. 2006;27:2499–2510.

    PubMed  Google Scholar 

  67. Gerson M, Phillips J, Morris S, McHenry P. Exercise-induced U-wave inversion as a marker of stenosis of the left anterior descending coronary artery. Circulation. 1976;60:1014–1020.

    Google Scholar 

  68. Miwa K, Nakagawa K, Hirai T, Inoue H. Exercise-induced U-wave alterations as a marker of well-developed and well-functioning collateral vessels in patients with effort angina. JACCM. 2000 March 1;35(3):757–763.

    CAS  Google Scholar 

  69. Suzuki M, Nishizaki M, Arita M, et al. Increased QT dispersion in patients with vasospastic angina. Circulation. 1998;98:435–440.

    PubMed  CAS  Google Scholar 

  70. Tandogan I, Aslan H, Aksoy Y, et al. Impact of coronary collateral circulation on QT dispersion in patients with coronary artery disease. Coron Artery Dis. 2006;17:623–628.

    PubMed  Google Scholar 

  71. Christian T, Gibbons R, Clements I, Berger P, Selvester R, Wagner G. Estimates of myocardium at risk and collateral flow in acute myocardial infarction using electrocardiographic indexes with comparison to radionuclide and angiographic measures. J Am Coll Cardiol. 1995;26:388–393.

    PubMed  CAS  Google Scholar 

  72. Aldrich H, Wagner N, Boswick J, et al. Use of initial ST-segment deviation for prediction of final electrocardiographic size of acute myocardial infarcts. Am J Cardiol. 1988;61:749–753.

    PubMed  CAS  Google Scholar 

  73. Palmeri S, Harrison D, Cobb F, et al. A QRS scoring system for assessing left ventricular function after myocardial infarction. N Engl J Med. 1982;306:4–9.

    PubMed  CAS  Google Scholar 

  74. Suero J, Marso S, Jones P, et al. Procedural outcomes and long-term survival among patients undergoing percutaneous coronary intervention of a chronic total occlusion in native coronary arteries: a 20-year experience. J Am Coll Cardiol. 2001;38:409–414.

    PubMed  CAS  Google Scholar 

  75. Aziz S, Stables R, Grayson A, Perry R, Ramsdale D. Percutaneous coronary intervention for chronic total occlusions: improved survival for patients with successful revascularization compared to a failed procedure. Catheter Cardiovasc Interv. 2007;70:15–20.

    PubMed  Google Scholar 

  76. Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med. 2006;10:45–55.

    PubMed  CAS  Google Scholar 

  77. Colombo A, Chieffo A. Drug-eluting stent update 2007: part III: technique and unapproved/unsettled indications (left main, bifurcations, chronic total occlusions, small vessels and long lesions, saphenous vein grafts, acute myocardial infarctions, and multivessel disease). Circulation. 2007;116:1424–1432.

    PubMed  Google Scholar 

  78. Wahl A, Billinger M, Fleisch M, Meier B, Seiler C. Quantitatively assessed coronary collateral circulation and restenosis following percutaneous revascularization. Eur Heart J. 2000;21:1776–1784.

    PubMed  CAS  Google Scholar 

  79. Vanoverschelde JLJ, Wijns W, Depré C, et al. Mechansims of chronic regional postischemic dysfunction in humans. New insights from the study of non-infarcted collateral-dependent myocardium. Circulation. 1993;87:1513–1523.

    PubMed  CAS  Google Scholar 

  80. Uren N, Crake T, Tousoulis D, Seydoux C, Davies G, Maseri A. Impairment of the myocardial vasomotor response to cold pressor stress in collateral dependent myocardium. Heart. 1997;78:61–67.

    PubMed  CAS  Google Scholar 

  81. Sambuceti G, Parodi O, Giorgetti A, et al. Microvascular dysfunction in collateral-dependent myocardium. J Am Coll Cardiol. 1995;26:615–623.

    PubMed  CAS  Google Scholar 

  82. McFalls E, Araujo L, Lammertsma A, et al. Vasodilator reserve in collateral-dependent myocardium as measured by positron emission tomography. Eur Heart J. 1993;14:336–343.

    PubMed  CAS  Google Scholar 

  83. Muehling O, Huber A, Cyran C, et al. The delay of contrast arrival in magnetic resonance first-pass perfusion imaging: a novel non-invasive parameter detecting collateral-dependent myocardium. Heart. 2007;93:842–847.

    PubMed  CAS  Google Scholar 

  84. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging. J Nucl Med. 1990;31:259–270.

    PubMed  CAS  Google Scholar 

  85. Meier P, Gloekler S, Zbinden R, et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116:975–983.

    PubMed  Google Scholar 

  86. Werner G, Ferrari M, Heinke S, et al. Angiographic assessment of collateral connections in comparison with invasively determined collateral function in chronic coronary occlusions. Circulation. 2003;107:1972–1977.

    PubMed  Google Scholar 

  87. Matsubara T, Minatoguchi S, Matsuo H, et al. Three minute, but not one minute, ischemia and nicorandil have a preconditioning effect in patients with coronary artery disease. J Am Coll Cardiol. 2000;35:345–351.

    PubMed  CAS  Google Scholar 

  88. Faircloth M, Redwood S, Marber M. Ischaemic preconditioning and myocardial adaptation to serial intracoronary balloon inflation: cut from the same cloth? Heart. 2004;90:358–360.

    PubMed  CAS  Google Scholar 

  89. Ambepityia G, Kopelman P, Ingram D, Swash M, Mills P, Timmis A. Exertional myocardial ischemia in diabetes: a quantitative analysis of anginal perceptual threshold and the influence of autonomic function. J Am Coll Cardiol. 1990;15:72–77.

    PubMed  CAS  Google Scholar 

  90. Chiariello M, Indolfi C, Cotecchia M, Sifola C, Romano M, Condorelli M. Asymptomatic transient ST changes during ambulatory ECG monitoring in diabetic patients. Am Heart J. 1985;110:529–534.

    PubMed  CAS  Google Scholar 

  91. Friedman P, Shook T, Kirshenbaum J, Selwyn A, Ganz P. Value of the intracoronary electrocardiogram to monitor myocardial ischemia during percutaneous transluminal coronary angioplasty. Circulation. 1986;74:330–339.

    PubMed  CAS  Google Scholar 

  92. Cohen M, Yang X, Downey J. Attenuation of S-T segment elevation during repetitive coronary occlusions truly reflects the protection of ischemic preconditioning and is not an epiphenomenon. Basic Res Cardiol. 1997;92:426–434.

    PubMed  CAS  Google Scholar 

  93. de Marchi S, Meier P, Oswald P, Seiler C. Variable ECG signs of ischemia during controlled occlusion of the left and right coronary artery in humans. Am J Physiol. 2006;291:H351–H356.

    Google Scholar 

  94. Surber R, Schwarz G, Figulla H, Werner G. Resting 12-lead electrocardiogram as a reliable predictor of functional recovery after recanalization of chronic total coronary occlusions. Clin Cardiol. 2005;28:293–297.

    PubMed  Google Scholar 

  95. Engelstein E, Terres W, Hofmann D, Hansen L, Hamm C. Improved global and regional left ventricular function after angioplasty for chronic coronary occlusion. Clin Invest. 1994;72:442–447.

    CAS  Google Scholar 

  96. Elhendy A, Cornel J, Roelandt J, et al. Impact of severity of coronary artery stenosis and the collateral circulation on the functional outcome of dyssynergic myocardium after revascularization in patients with healed myocardial infarction and chronic left ventricular dysfunction. Am J Cardiol. 1997;79:883–888.

    PubMed  CAS  Google Scholar 

  97. Werner G, Surber R, Kuethe F, et al. Collaterals and the recovery of left ventricular function after recanalization of a chronic total coronary occlusion. Am Heart J. 2005;149:129–317.

    PubMed  Google Scholar 

  98. Blanke H, Cohen M, Karsch K, Fagerstrom R, Rentrop K. Prevalence and significance of residual flow to the infarct zone during the acute phase of myocardial infarction. J Am Coll Cardiol. 1985;5:827–831.

    PubMed  CAS  Google Scholar 

  99. Hirai T, Fujita M, Nakajima H, et al. Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation. 1989;79:791–796.

    PubMed  CAS  Google Scholar 

  100. Habib GB, Heibig J, Forman SA, et al. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation. 1991;83:739–746.

    PubMed  CAS  Google Scholar 

  101. Perez-Castellano N, Garcia E, Abeytua M, et al. Influence of collateral circulation on in-hospital death from anterior acute myocardial infarction. J Am Coll Cardiol. 1998;31:512–518.

    PubMed  CAS  Google Scholar 

  102. Rentrop K, Thornton J, Feit F, Van Buskirk M. Determinants and protective potential of coronary arterial collaterals as assessed by an angioplasty model. Am J Cardiol. 1988;61:677–684.

    PubMed  CAS  Google Scholar 

  103. Seiler C, Pohl T, Lipp E, Hutter D, Meier B. Regional left ventricular function during transient coronary occlusion: relation with coronary collateral flow. Heart. 2002;88:35–42.

    PubMed  CAS  Google Scholar 

  104. Fulton WFM. Arterial anastomoses in the coronary circulation. I. Anatomical features in normal and diseased hearts demonstrated by stereoarteriography. Scottish Med J. 1963;8:420–434.

    CAS  Google Scholar 

  105. Fulton WFM. Arterial anastomoses in the coronary circulation. II. Distribution, enumeration and measurement of coronary arterial anastomoses in health and disease. Scott Med J. 1963;8:466–474.

    PubMed  CAS  Google Scholar 

  106. Rockstroh J, Brown B. Coronary collateral size, flow capacity, and growth. Estimates from the angiogram in patients with obstructive coronary disease. Circulation. 2002;105:168–173.

    PubMed  Google Scholar 

  107. Gibson C, Ryan K, Sparano A, et al. Angiographic methods to assess human coronary angiogenesis. Am Heart J. 1999;137:169–179.

    PubMed  CAS  Google Scholar 

  108. Levin D. Pathways and functional significance of the coronary collateral circulation. Circulation. 1974;50:831–837.

    PubMed  CAS  Google Scholar 

  109. Gensini GG, Bruto da Costa BC. The coronary collateral circulation in living man. Am J Cardiol. 1969;24:393–400.

    PubMed  CAS  Google Scholar 

  110. Carroll R, Verani M, Falsetti H. The effect of collateral circulation on segmental left ventricular contraction. Circulation. 1974;50:709–713.

    PubMed  CAS  Google Scholar 

  111. Zierler K. Circulation times and theory of indicator dilution mehtods for detemining blood flow and volume. In: Society AP, ed. Handbook of Physiology. Washington DC: American Phyiological Society; 1962:585–615.

    Google Scholar 

  112. Seiler C, Billinger M, Fleisch M, Meier B. Washout collaterometry: a new method of assessing collaterals using angiographic contrast clearance during coronary occlusion. Heart. 2001;86:540–546.

    PubMed  CAS  Google Scholar 

  113. Feldman R, Pepine C. Evaluation of coronary collateral circulation in conscious humans. Am J Cardiol. 1984;53:1233–1238.

    PubMed  CAS  Google Scholar 

  114. Cohen M, Sherman W, Rentrop K, Gorlin R.Determinants of collateral filling observed during sudden controlled coronary artery occlusion in human subjects. J Am Coll Cardiol. 1989;13:297–303.

    PubMed  CAS  Google Scholar 

  115. Probst P, Zangl W, Pachinger O. Relation of coronary arterial occlusion pressure during percutaneous transluminal coronary angioplasty to presence of collaterals. Am J Cardiol. 1985;55:1264–1269.

    PubMed  CAS  Google Scholar 

  116. Macdonald R, Hill J, Feldman R. ST segment response to acute coronary occlusion: coronary hemodynamic and angiographic determinants of direction of ST segment shift. Circulation. 1986;74:973–979.

    PubMed  CAS  Google Scholar 

  117. Meier B, Luethy P, Finci L, Steffenino G, Rutishauser W. Coronary wedge pressure in relation to spontaneously visible and recruitable collaterals. Circulation. 1987;75:906–913.

    PubMed  CAS  Google Scholar 

  118. de Marchi S, Oswald P, Windecker S, Meier B, Seiler C. Reciprocal relationship between left ventricular filling pressure and the recruitable human coronary collateral circulation. Eur Heart J. 2005;26:558–566.

    PubMed  Google Scholar 

  119. Spaan J, Piek J, Hoffman J, Siebes M. Physiological basis of clinically used coronary hemodynamic indices. Circulation. 2006;113:446–455.

    PubMed  Google Scholar 

  120. Pijls NHJ, van Son JAM, Kirkeeide RL, de Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous coronary angioplasty. Circulation. 1993;86:1354–1367.

    Google Scholar 

  121. Spaan J, Kolyva C, van den Wijngaard J, et al.Coronary structure and perfusion in health and disease. Philos Transact A Math Phys Eng Sci. 2008;366:3137–3153.

    PubMed  Google Scholar 

  122. Hoefer I, van Royen N, Buschmann I, Piek J, Schaper W. Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovasc Res. 2001;49:609–617.

    PubMed  CAS  Google Scholar 

  123. Pijls NH, Bech GJ, el Gamal MI, et al. Quantification of recruitable coronary collateral blood flow in conscious humans and its potential to predict future ischemic events. J Am Coll Cardiol. 1995;25:1522–1528.

    PubMed  CAS  Google Scholar 

  124. Seiler C, Fleisch M, Garachemani A, Meier B. Coronary collateral quantitation in patients with coronary artery disease using intravascular flow velocity or pressure measurements. J Am Coll Cardiol. 1998;32:1272–1279.

    PubMed  CAS  Google Scholar 

  125. Christian T, Berger P, O'Connor M, Hodge D, Gibbons R. Threshold values for preserved viability with a noninvasive measurement of collateral blood flow during acute myocardial infarction treated by direct coronary angioplasty. Circulation. 1999;100:2392–2395.

    PubMed  CAS  Google Scholar 

  126. Cornelissen A, Dankelman J, VanBavel E, Stassen H, Spaan J. Myogenic reactivity and resistance distribution in the coronary arterial tree: a model study. Am J Physiol. 2000;278:H1490–H1499.

    CAS  Google Scholar 

  127. Vogel R, Zbinden R, Indermuhle A, Windecker S, Meier B, Seiler C. Collateral-flow measurements in humans by myocardial contrast echocardiography: validation of coronary pressure-derived collateral-flow assessment. Eur Heart J. 2006;27:157–165.

    PubMed  Google Scholar 

  128. van Liebergen RA, Piek JJ, Koch KT, de Winter RJ, Schotborgh CE, Lie KI. Quantification of collateral flow in humans: a comparison of angiographic, electrocardiographic and hemodynamic variables. J Am Coll Cardiol. 1999;33:670–677.

    PubMed  Google Scholar 

  129. Kattus A, Gregg D. Some determinants of coronary collateral blood flow in the open-chest dog. Circ Res. 1959;7:628–642.

    PubMed  CAS  Google Scholar 

  130. Conway R, Kirk E, Eng C. Ventricular preload alters intravascular and extravascular resistances of coronary collaterals. Am J Physiol. 1988;254:H532–H541.

    PubMed  CAS  Google Scholar 

  131. Perera D, Biggart S, Postema P, et al. Right atrial pressure: can it be ignored when calculating fractional flow reserve and collateral flow index? J Am Coll Cardiol. 2004;44:2089–2091.

    PubMed  Google Scholar 

  132. Jenni R, Büchi M, Zweifel H, Ritter M. Impact of Doppler guidewire size and flow rates on intravascular velocity profiles. Catheter Cardiovasc Diagn. 1998;45:96–100.

    CAS  Google Scholar 

  133. Seiler C, Fleisch M, Meier B. Direct intracoronary evidence of collateral steal in humans. Circulation. 1997;96:4261–7.

    PubMed  CAS  Google Scholar 

  134. Perera D, Patel S, Blows L, Tomsett E, Marber M, Redwood SR. Pharmacological vasodilatation in the assessment of pressure-derived collateral flow index. Heart. 2006;92:1149–1150.

    PubMed  CAS  Google Scholar 

  135. Strotmann J, Bauersachs J, Fraccarollo D, et al. Trauma induced by nontraumatic coronary devices and its impact on vascular reactivity and morphology. Am J Physiol. 2002;283:H2356–2362.

    CAS  Google Scholar 

  136. Zbinden R, Zbinden S, Windecker S, Meier B, Seiler C. Direct demonstration of coronary collateral growth by physical endurance exercise in a healthy marathon runner. Heart. 2004;90:1350–1351.

    Google Scholar 

  137. Zbinden R, Meier P, Hutter D, et al. Coronary collateral flow in response to endurance exercise training. Eur J Cardiovasc Prev and Rehab. 2007;14:250–257.

    Google Scholar 

  138. Matsuo H, Watanabe S, Kadosaki T, et al. Validation of collateral fractional flow reserve by myocardial perfusion imaging. Circulation. 2002;105:1060–1065.

    PubMed  Google Scholar 

  139. Grill H, Brinker J, Taube J, et al. Contrast echocardiographic mapping of collateralized myocardium in humans before and after coronary angioplasty. J Am Coll Cardiol. 1990;16:1594–1600.

    PubMed  CAS  Google Scholar 

  140. Sabia PJ, Powers ER, Jayaweera AR, Ragosta M, Kaul S. Functional significance of collateral blood flow in patients with recent acute myocardial infarction: a study using myocardial contrast echocardiography. Circulation. 1992;85:2080–2089.

    PubMed  CAS  Google Scholar 

  141. Mills J, Fischer D, Villanueva F. Coronary collateral development during chronic ischemia: serial assessment using harmonic myocardial contrast echocardiography. J Am Coll Cardiol. 2000;36:618–624.

    PubMed  CAS  Google Scholar 

  142. de Marchi S, Schwerzmann M, Fleisch M, Billinger M, Meier B, Seiler C. Quantitative contrast echocardiographic assessment of collateral derived myocardial perfusion during elective coronary angioplasty. Heart. 2001;86:324–329.

    PubMed  Google Scholar 

  143. Coggins M, Sklenar J, Le D, Wei K, Lindner J, Kaul S. Noninvasive prediction of ultimate infarct size at the time of acute coronary occlusion based on the extent and magnitude of collateral-derived myocardial blood flow. Circulation. 2001;104:2471–2477.

    PubMed  CAS  Google Scholar 

  144. Vogel R, Indermühle A, Seiler C. Determination of the absolute perfusion threshold preventing myocardial ischemia in humans. Heart. 2007;93:115–116.

    PubMed  CAS  Google Scholar 

  145. Murray C. A relationship between circumference and weight in trees and its bearing on branching angles. J Gen Physiol. 1927;10:725–729.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Seiler, C. (2009). Assessment of the Human Coronary Collateral Circulation. In: Collateral Circulation of the Heart. Springer, London. https://doi.org/10.1007/978-1-84882-342-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-342-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-341-9

  • Online ISBN: 978-1-84882-342-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics