Skip to main content

Relevance of the Human Coronary Collateral Circulation

  • Chapter
  • First Online:
Collateral Circulation of the Heart
  • 956 Accesses

The symptom of angina pectoris surfaced only in the late 18th century and became more prevalent even 150 years later. For a long time, the view prevailed that angina pectoris was almost always fatal. Conversely, developing tolerance to exercise-induced angina pectoris which could even ‘cure’ it was described by William Heberden. Structural channels connecting the right and left coronary arteries were first described by Richard Lower of Amsterdam in 1669. In 1757, the Swiss anatomist Albrecht von Haller also demonstrated anastomoses between coronary arteries. The first anatomic observations of anastomoses were possibly made in non-obstructed coronary arteries, because coronary artery disease (CAD) was much less prevalent than today. Using post-mortem imaging of the coronary circulation by a multitude of different techniques, a controversy on the existence of structural intercoronary anastomoses ensued, which was not settled in their favour before the first half of the 20th century in case of the presence of CAD and not before the early 1960s in case of the normal human coronary circulation by William Fulton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAD:

coronary artery disease

CFI:

collateral flow index (no unit)

CK:

creatine kinase

CVP:

central venous pressure (mmHg)

HOCM:

hypertrophic obstructive cardiomyopathy

LAD:

left anterior descending artery

LCX:

left circumflex coronary artery

LV:

left ventricle, left ventricular

P ao :

mean aortic pressure (mmHg)

PCI:

percutaneous coronary intervention

P occl :

mean coronary occlusive or wedge pressure (mmHg)

RCA:

right coronary artery

TASH:

transcoronary ablation of septal hypertrophy

References

  1. Proudfit W. Origin of concept of ischeamic heart disease. Br Heart J. 1983;50:209–212.

    PubMed  CAS  Google Scholar 

  2. Michaels L. Aetiology of coronary artery disease: an historical approach. Br Heart J. 1966;1966:258–264.

    Google Scholar 

  3. Herrik J. Clinical features of sudden obstruction of the coronary arteries. JAMA. 1912;59:2015–2020.

    Google Scholar 

  4. Lower R. Tractatus de corde, item de motu et colore sanguinis, et chyli in eum transitu. Amstelaedami. 1669.

    Google Scholar 

  5. Heberden W. Commentaries on the history and cure of diseases. In: Wilius F, Kays T, eds. Classics of Cardiology. New York: Dover; 1961:220–224.

    Google Scholar 

  6. Lower R. Early Science in Oxford. Oxford: Oxford University Press; 1932.

    Google Scholar 

  7. Prinzmetal M, Simkin B, Bergman HC, Kruger HE. Studies on the coronary circulation. II. The collateral circulation of the normal human heart by coronary perfusion with radioactive erythrocytes and glass spheres. Am Heart J. 1947;33:420–442.

    PubMed  CAS  Google Scholar 

  8. Thebesius A. Dissertatio de circulo sanguinis in corde. Lugdunum Batavorum. 1708.

    Google Scholar 

  9. von Haller A. Elementa physiologiae corporis humani. Lausanne. 1757:371.

    Google Scholar 

  10. Heberden W. A letter to Dr. Heberden, concerning the angina pectoris; and an account of the dissection of one who had been troubled with that disorder. Read at the college November 17, 1772. Medical Transactions Published by the College of Physicians in London. 1785;3:1–11.

    Google Scholar 

  11. Kobler J. The Reluctant Surgeon. A Biography of John Hunter. Garden City, NY: Doubleday and Co.; 1960.

    Google Scholar 

  12. Hunter J. A treatise on the Blood, Inflammation, and Gun-Shot Wounds. Philadelphia: Thomas Bradford; 1796.

    Google Scholar 

  13. West S. The anastomoses of the coronary arteries. The Lancet. 1883;1:945–946.

    Google Scholar 

  14. Hyrtl J. Wien; 1855.

    Google Scholar 

  15. Henle J. Handbuch der Systematischen Anatomie des Menschen. Braunschweig: Friedrich Vieweg und Sohn; 1866.

    Google Scholar 

  16. Cohnheim J, von Schulthess-Rechberg A. Ueber die Folgen der Kranzarterienverschliessung für das Herz. Virchows Arch. 1881;85:503–537.

    Google Scholar 

  17. Fulton W, van Royen N. Morphology of the collateral circulation in the human heart. In: Schaper W, Schaper J, eds. Arteriogenesis. Boston, Dirdrecht, London: Kluwer Academic Publishers; 2004:297–331.

    Google Scholar 

  18. Spalteholz W. Die Koronararterien des Herzens. Verhandl Anat Gesell. 1907;30:141.

    Google Scholar 

  19. Schlesinger M. New radiopaque mass for vascular injection. Lab Invest. 1957;6:1–11.

    PubMed  CAS  Google Scholar 

  20. Seiler C, Kirkeeide R, Gould K. Measurement from arteriograms of regional myocardial bed size distal to any point in the coronary vascular tree for assessing anatomic area at risk. J Am Coll Cardiol. 1993;21:783–797.

    PubMed  CAS  Google Scholar 

  21. Rodriguez F, Reiner L. A new method of dissection of the heart. Arch Pathol. 1957;63:160–163.

    Google Scholar 

  22. Schlesinger M. An injection plus dissection study of coronary artery occlusions and anastomoses. Am Heart J. 1938;15:528–568.

    Google Scholar 

  23. Langer D. Anastomosen der Kranzarterien des Herzens. Sitzungsbericht der Wiener Akad. Math.-Naturwiss. 1880;81.

    Google Scholar 

  24. Hirsch C, Spalteholz W. Koronararterien und Herzmuskel. Deutsche medizinische Wochenschrift. 1907;33:790–795.

    Google Scholar 

  25. Zoll PM, Wessler S, Schlesinger MJ. Interarterial coronary anastomoses in the heart, with particular reference to anemia and relative cardiac anoxia. Circulation. 1951;4:797–815.

    PubMed  CAS  Google Scholar 

  26. Blumgart HL, Schlesinger MJ, Davis D. Studies on the relation of the clinical manifestations of angina pectoris, coronary thrombosis and myocardial infarction to the pathological findings. Am Heart J. 1940;19:1–91.

    Google Scholar 

  27. Baroldi G. The collaterals of the coronary arteries in normal and pathologic hearts. Circ Res. 1956;4:223–229.

    PubMed  CAS  Google Scholar 

  28. Pitt B. Interarterial coronary anastomoses. Occurence in normal hearts and in certain pathologic conditions. Circulation. 1959;20:816–822.

    PubMed  CAS  Google Scholar 

  29. Pepler W, Meyer B. .Interarterial coronary anastomoses and coronary arterial pattern. A comparative study of South African Bantu and European hearts. Circulation. 1960;22:14–24.

    PubMed  CAS  Google Scholar 

  30. Bloor C, Keefe J, Browne M. Intercoronary anastomoses in congenital heart disease. Circulation. 1966;33:227–231.

    Google Scholar 

  31. Reiner L, Molnar J, Jimenez F, Freudenthal R. Interarterial coronary anastomoses in neonates. Arch Pathol. 1961;71:103–112.

    PubMed  CAS  Google Scholar 

  32. Crainicianu A. Anatomische Studien über die Koronararterien und experimentelle Untersuchungen über ihre Durchgängigkeit. Virchows Arch Path Anat. 1922;238:1.

    Google Scholar 

  33. Gross L. The Blood Supply of the Heart. Oxford: Oxford University Press; 1921.

    Google Scholar 

  34. Fulton WFM. Arterial anastomoses in the coronary circulation. I. Anatomical features in normal and diseased hearts demonstrated by stereoarteriography. Scottish Med J. 1963;8:420–434.

    CAS  Google Scholar 

  35. Fulton WFM. Arterial anastomoses in the coronary circulation. II. Distribution, enumeration and measurement of coronary arterial anastomoses in health and disease. Scott Med J. 1963;8:466–474.

    PubMed  CAS  Google Scholar 

  36. Fulton WFM. Immersion radiography of injected specimens. Brit J Radiol. 1963;36:685–688.

    PubMed  CAS  Google Scholar 

  37. Wall J. A letter from Dr. Wall to Dr. Heberden, on the same subject (angina pectoris). Medical Transactions Published by the College of Physicians in London. 1785;3:12–24.

    Google Scholar 

  38. MacAlpin R, Weidner W, Kattus AJ, Hanafee W. Electrocardiographic changes during selective coronary cineangiography. Circulation. 1966;34:627–637.

    PubMed  CAS  Google Scholar 

  39. Osler W. Lectures on angina pectoris and allied states. In. New York: D. Appleton and Company; 1897:52.

    Google Scholar 

  40. Wenckebach K. Toter Punkt, “second wind”, und Angina pectoris. Wien. klin. Wchschr. 1928;41:1.

    Google Scholar 

  41. Paulin S. Interarterial coronary anastomoses in relation to arterial obstruction demonstrated in coronary arteriography. Invest Radiol. 1967;2:147–159.

    Google Scholar 

  42. Gensini GG, Bruto da Costa BC. The coronary collateral circulation in living man. Am J Cardiol. 1969;24:393–400.

    PubMed  CAS  Google Scholar 

  43. Helfant RH, Vokonas PS, Gorlin R. Functional importance of the human coronary collateral circulation. N Engl J Med. 1971;284:1277–1281.

    PubMed  CAS  Google Scholar 

  44. Hamby R, Aintablian A, Schwartz A. Reappraisal of the functional significance of the coronary collateral circulation. Am J Cardiol. 1976;38:304–309.

    PubMed  CAS  Google Scholar 

  45. Rowe G. An angiographic and clinical study of coronary collateral circulation. Basic Res Cardiol. 1979;74:131–141.

    PubMed  CAS  Google Scholar 

  46. Eng C, Patterson R, Horowitz S, et al. Coronary collateral function during exercise. Circulation. 1982;66:309–316.

    PubMed  CAS  Google Scholar 

  47. Goldstein R, Stinson E, Scherer J, Seningen R, Grehl T, Epstein SE. Intraoperative coronary collateral function in patients with coronary occlusive disease. Nitroglycerin responsiveness and angiographic correlations. Circulation. 1974;49:298–308.

    PubMed  CAS  Google Scholar 

  48. Goldstein RE, Michaelis LL, Morrow AG, Epstein SE. Coronary collateral function in patients without occlusive coronary artery disease. Circulation. 1975;51:118–125.

    PubMed  CAS  Google Scholar 

  49. Smith SJ, Gorlin R, Herman M, Taylor W, Collins JJ. Myocardial blood flow in man: effects of coronary collateral circulation and coronary artery bypass surgery. J Clin Invest. 1972;51:2556–2565.

    PubMed  Google Scholar 

  50. Grüntzig A, Senning A, Siegenthaler W. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med. 1979;301:61–68.

    PubMed  Google Scholar 

  51. Feldman R, Pepine C. Evaluation of coronary collateral circulation in conscious humans. Am J Cardiol. 1984;53:1233–1238.

    PubMed  CAS  Google Scholar 

  52. Ofili E, Kern M, Tatineni S, et al. Detection of coronary collateral flow by a Doppler-tipped guide wire during coronary angioplasty. Am Heart J. 1991;122:221–225.

    PubMed  CAS  Google Scholar 

  53. Pijls NHJ, van Son JAM, Kirkeeide RL, de Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous coronary angioplasty. Circulation. 1993;86:1354–1367.

    Google Scholar 

  54. Seiler C, Fleisch M, Garachemani A, Meier B. Coronary collateral quantitation in patients with coronary artery disease using intravascular flow velocity or pressure measurements. J Am Coll Cardiol. 1998;32:1272–1279.

    PubMed  CAS  Google Scholar 

  55. Wustmann K, Zbinden S, Windecker S, Meier B, Seiler C. Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries? Circulation. 2003;108:2213–2220.

    Google Scholar 

  56. Schaper W. Comparative arteriography of the collateral circulation of the heart. In: Schaper W, ed. The Collateral Circulation of the Heart. Amsterdam: North Holland Publishing Co.; 1971:39–50.

    Google Scholar 

  57. Schaper W, Flameng W, De Brabander M. Comparative aspects of coronary collateral circulation. Adv Exp Med Biol. 1972;22:267–276.

    PubMed  CAS  Google Scholar 

  58. Schaper W, Flameng W, Wusten B, Palmowski J. The distribution of coronary and of coronary collateral flow in normal hearts and after chronic coronary occlusion. Adv Exp Med Biol. 1973;39:151–60.

    PubMed  CAS  Google Scholar 

  59. Schaper W, Jageneau A, Xhonneux R. The development of collateral circulation in the pig and dog heart. Cardiologia. 1967;51:321–325.

    PubMed  CAS  Google Scholar 

  60. Gregg D. The natural history of coronary collateral development. Circ Res. 1974;35:335–344.

    PubMed  CAS  Google Scholar 

  61. Weaver M, Pantely G, Bristow J, Ladley H. A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man. Cardiovasc Res. 1986;20:907–917.

    PubMed  CAS  Google Scholar 

  62. Campbell C, Takanashi Y, Laas J, Meus P, Pick R, Replogle R. Effect of coronary artery reperfusion on infarct size in swine. J Thorac Cardiovasc Surg. 1981;81:288–296.

    PubMed  CAS  Google Scholar 

  63. Blumgart H, Zoll P. The experimental production of intercoronary arterial anastomoses and their functional significance. Circulation. 1950;1:10–27.

    PubMed  CAS  Google Scholar 

  64. Eckstein R. Coronary interarterial anastomoses in young pigs and mongrel dogs. Circ Res. 1954;2:460–465.

    PubMed  CAS  Google Scholar 

  65. Lumb D, Hardy L. Collateral circulation and survival related to gradual occlusion of the right coronary artery in the pig. Circulation. 1963;27:717–725.

    Google Scholar 

  66. Vastesaeger M, Van der Straeten P, Friart J, Candaele G, Ghys A, Bernard R. Intercoronary anastomoses like those seen in postmortem coronarography. Acta Cardiol. 1957;12:365–401.

    PubMed  CAS  Google Scholar 

  67. Lumb G, Hardy L. Collaterals and coronary artery narrowing. I. The effect of coronary artery narrowing on collateral channels in swine. Lab Invest. 1964;13:1530–1540.

    PubMed  CAS  Google Scholar 

  68. Ramo B, Peter R, Ratliff N, Kong Y, McIntosh H, Morris JJ. The natural history of right coronary arterial occlusion in the pig. Comparison with left anterior descending arterial occlusion. Am J Cardiol. 1970;26:156–161.

    PubMed  CAS  Google Scholar 

  69. Spalteholz W. Die Arterien der Herzwand. Anatomische Untersuchungen an Menschen- und Tierherzen. Nebst Erörterung der Voraussetzung für die Herstellung eines Kollateralkresilaufes. Leipzig: S. Hirzel; 1924.

    Google Scholar 

  70. Lumb G, Hardy L. Collateral circulation and survival related to gradual occlusion of the right coronary artery in the pig. Circulation. 1963;27:717–721.

    Google Scholar 

  71. Bloor C. Functional significance of the coronary collateral circulation. Am J Pathol. 1974;76:562–586.

    Google Scholar 

  72. Sjöquist P, Duker G, Almgren O. Distribution of the collateral blood flow at the lateral border of the ischemic myocardium after acute coronary occlusion in the pig and the dog. Basic Res Cardiol. 1984;79:164–175.

    PubMed  Google Scholar 

  73. Maxwell M, Hearse D, Yellon D. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res. 1987;21:737–746.

    PubMed  CAS  Google Scholar 

  74. Rasmussen M, Reimer K, Kloner R, Jennings R. Infarct size reduction by propranolol before and after coronary ligation in dogs. Circulation. 1977;56:794–798.

    PubMed  CAS  Google Scholar 

  75. Yellon D, Hearse D, Maxwell M, Chambers D, Downey J. Sustained limitation of myocardial necrosis 24 hours after coronary artery occlusion: verapamil infusion in dogs with small myocardial infarcts. Am J Cardiol. 1983;51:1409–1413.

    PubMed  CAS  Google Scholar 

  76. Smith E, Lefer A. Stabilization of cardiac lysosomal and cellular membranes in protection of ischemic myocardium due to coronary occlusion: efficacy of the nonsteroidal anti-inflammatory agent, naproxen. Am Heart J. 1981;101:394–402.

    PubMed  CAS  Google Scholar 

  77. Burke S, DiCola G, Lefer A. Protection of ischemic cat myocardium by CGS-13080, a selective potent thromboxane A2 synthesis inhibitor. J Cardiovasc Pharmacol. 1983;5:842–847.

    PubMed  CAS  Google Scholar 

  78. Maclean D, Fishbein M, Braunwald E, Maroko P. Long-term preservation of ischemic myocardium after experimental coronary artery occlusion. J Clin Invest. 1978;61:541–551.

    PubMed  CAS  Google Scholar 

  79. Evans R, Val-Mejias J, Kulevich J, Fischer V, Mueller HS. Evaluation of a rat model for assessing interventions to salvage ischaemic myocardium: effects of ibuprofen and verapamil. Cardiovasc Res. 1985;19:132–138.

    PubMed  CAS  Google Scholar 

  80. Connelly C, Vogel W, Hernandez Y, Apstein C. Movement of necrotic wavefront after coronary artery occlusion in rabbit.Movement of necrotic wavefront after coronary artery occlusion in rabbit. Am J Physiol. 1982;243:H682–690.

    PubMed  CAS  Google Scholar 

  81. Fiedler V. Reduction of acute myocardial ischemia in rabbit hearts by nafazatrom. J Cardiovasc Pharmacol. 1984;6:318–324.

    PubMed  CAS  Google Scholar 

  82. Rösen R, Marsen A, Klaus W. Local myocardial perfusion and epicardial NADH-fluorescence after coronary artery ligation in the isolated guinea pig heart. Basic Res Cardiol. 1984;79:59–67.

    PubMed  Google Scholar 

  83. Gaide M, Cameron J, Altman C, Myerburg R, Bassett A. Myocardial infarction in the guinea pig: cellular electrophysiology. Life Sci. 1985;36:2391–2401.

    PubMed  CAS  Google Scholar 

  84. Smith G, Geary G, Ruf W, Fore F, Oyama M, McNamara J. Quantitative effect of a single large dose of methylprednisolone on infarct size in baboons. Cardiovasc Res. 1980;14:408–418.

    PubMed  CAS  Google Scholar 

  85. Geary G, Smith G, McNamara J. Quantitative effect of early coronary artery reperfusion in baboons. Extent of salvage of the perfusion bed of an occluded artery. Circulation. 1982;66:391–396.

    PubMed  CAS  Google Scholar 

  86. Reimer KA, Ideker RE, Jennings RB. Effect of coronary occlusion site on ischemic bed size and collateral blood flow in dogs. Cardiovasc Res. 1981;15:668–674.

    PubMed  CAS  Google Scholar 

  87. Nienaber C, Gottwik M, Winkler B, Schaper W. The relationship between the perfusion deficit, infarct size and time after experimental coronary artery occlusion. Basic Res Cardiol. 1983;78:210–226.

    PubMed  CAS  Google Scholar 

  88. Sigwart U. Non-surgical myocardial reduction for hypertrophic obstructive cardiomyopathy. Lancet. 1995;346:211–214.

    PubMed  CAS  Google Scholar 

  89. Durand E, Mousseaux E, Coste P, et al. Non-surgical septal myocardial reduction by coil embolization for hypertrophic obstructive cardiomyopathy: early and 6 months follow-up. Eur Heart J. 2008;29:348–355.

    PubMed  Google Scholar 

  90. Werner G, Ferrari M, Heinke S, et al. Angiographic assessment of collateral connections in comparison with invasively determined collateral function in chronic coronary occlusions. Circulation. 2003;107:1972–1977.

    PubMed  Google Scholar 

  91. Wani S, Seiler C. Transcoronary ablation of septal hypertrophy in HOCM: septal collaterals may cause unwanted inferior myocardial infarction. Kardiovask Med. 2007;10:401–402.

    Google Scholar 

  92. Rowe G. Inequalities of myocardial perfusion in coronary artery disease ("coronary steal"). Circulation. 1970;42:193–194.

    PubMed  CAS  Google Scholar 

  93. Schaper W, Lewi P, Flameng W, Gijpen L. Myocardial steal produced by coronary vasocilation in chronic coronary artery occlusion. Basic Res Cardiol. 1973;68:3–20.

    PubMed  CAS  Google Scholar 

  94. Seiler C, Fleisch M, Meier B. Direct intracoronary evidence of collateral steal in humans. Circulation. 1997;96:4261–4267.

    PubMed  CAS  Google Scholar 

  95. Werner GS, Fritzenwanger M, Prochnau D, et al. Determinants of coronary steal in chronic total coronary occlusions donor artery, collateral, and microvascular resistance. J Am Coll Cardiol. 2006;48:51–58.

    PubMed  Google Scholar 

  96. Gould KL. Coronary steal. Is it clinically important? Chest. 1989;96:227–228.

    PubMed  CAS  Google Scholar 

  97. Urban P, Meier B, Finci L, de Bruyne B, Steffenino G, Rutishauser W. Coronary wedge pressure: a predictor of restenosis after coronary balloon angioplasty. J Am Coll Cardiol. 1987;10:504–509.

    PubMed  CAS  Google Scholar 

  98. Wahl A, Billinger M, Fleisch M, Meier B, Seiler C. Quantitatively assessed coronary collateral circulation and restenosis following percutaneous revascularization. Eur Heart J. 2000;21:1776–1784.

    PubMed  CAS  Google Scholar 

  99. Jensen L, Thayssen P, Lassen J, et al. Recruitable collateral blood flow index predicts coronary instent restenosis after percutaneous coronary intervention. Eur Heart J. 2007;28:1820–1826.

    PubMed  Google Scholar 

  100. Kern MJ. Collateral flow and restenosis: appreciating hydraulics and outcomes of percutanous coronary intervention. Eur Heart J. 2000;21:1730–1732.

    PubMed  CAS  Google Scholar 

  101. Spaan J, Piek J, Hoffman J, Siebes M. Physiological basis of clinically used coronary hemodynamic indices. Circulation. 2006;113:446–455.

    PubMed  Google Scholar 

  102. Nathoe HM, Buskens E, Jansen EW, et al. Role of coronary collaterals in off-pump and on-pump coronary bypass surgery. Circulation. 2004;110:1738–1742.

    PubMed  Google Scholar 

  103. Nathoe HM, Koerselman J, Buskens E, et al. Determinants and prognostic significance of collaterals in patients undergoing coronary revascularization. Am J Cardiol. 2006;98:31–35.

    PubMed  Google Scholar 

  104. Koerselman J, de Jaegere PP, Verhaar MC, Grobbee DE, van der Graaf Y, Group SS. Prognostic significance of coronary collaterals in patients with coronary heart disease having percutaneous transluminal coronary angioplasty. Am J Cardiol. 2005;96:390–394.

    PubMed  Google Scholar 

  105. Hjemdahl P, Eriksson SV, Held C, Forslund L, Nasman P, Rehnqvist N. Favourable long term prognosis in stable angina pectoris: an extended follow up of the angina prognosis study in Stockholm (APSIS). Heart. 2006;92:177–182.

    PubMed  CAS  Google Scholar 

  106. Meier P, Gloekler S, Zbinden R, et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116:975–983.

    PubMed  Google Scholar 

  107. Abbott JD, Choi EJ, Selzer F, et al. Impact of coronary collaterals on outcome following percutaneous coronary intervention (from the National Heart, Lung, and Blood Institute Dynamic Registry). Am J Cardiol. 2005;96:676–680.

    PubMed  Google Scholar 

  108. Antoniucci D, Valenti R, Moschi G, et al. Relation between preintervention angiographic evidence of coronary collateral circulation and clinical and angiographic outcomes after primary angioplasty or stenting for acute myocardial infarction. Am J Cardiol. 2002;89:121–125.

    PubMed  Google Scholar 

  109. Hansen JF. Coronary collateral circulation: clinical significance and influence on survival in patients with coronary artery occlusion. Am Heart J. 1989;117:290–295.

    PubMed  CAS  Google Scholar 

  110. Gohlke H, Heim E, Roskamm H. Prognostic importance of collateral flow and residual coronary stenosis of the myocardial infarct artery after anterior wall Q-wave acute myocardial infarction. Am J Cardiol. 1991;67:1165–1169.

    PubMed  CAS  Google Scholar 

  111. Boehrer JD, Lange RA, Willard JE, Hillis LD. Influence of collateral filling of the occluded infarct-related coronary artery on prognosis after acute myocardial infarction. Am J Cardiol. 1992;69:10–12.

    PubMed  CAS  Google Scholar 

  112. Clements IP, Christian TF, Higano ST, Gibbons RJ, Gersh BJ. Residual flow to the infarct zone as a determinant of infarct size after direct angioplasty. Circulation. 1993;88:1527–1533.

    PubMed  CAS  Google Scholar 

  113. Kodama K, Kusuoka H, Sakai A, et al. Collateral channels that develop after an acute myocardial infarction prevent subsequent left ventricular dilation. J Am Coll Cardiol. 1996;27:1133–1139.

    PubMed  CAS  Google Scholar 

  114. Nicolau JC, Nogueira PR, Pinto MA, Serrano CVJ, Garzon SA. Early infarct artery collateral flow does not improve long-term survival following thrombolytic therapy for acute myocardial infarction. Am J Cardiol. 1999;83:21–26.

    PubMed  CAS  Google Scholar 

  115. Elsman P, van ‘t Hof AW, de Boer MJ, et al. Role of collateral circulation in the acute phase of ST-segment-elevation myocardial infarction treated with primary coronary intervention. Eur Heart J. 2004;25:854–858.

    PubMed  CAS  Google Scholar 

  116. Ishihara M, Inoue I, Kawagoe T, et al. Comparison of the cardioprotective effect of prodromal angina pectoris and collateral circulation in patients with a first anterior wall acute myocardial infarction. Am J Cardiol. 2005;95:622–625.

    PubMed  Google Scholar 

  117. Pijls NHJ, Bech GJW, El Gamal MIH, et al. Quantification of recruitable coronary collateral blood flow in conscious humans and its potential to predict future ischemic events. J Am Coll Cardiol. 1995;25:1522–1528.

    PubMed  CAS  Google Scholar 

  118. Billinger M, Kloos P, Eberli FR, Windecker S, Meier B, Seiler C. Physiologically assessed coronary collateral flow and adverse cardiac ischemic events: a follow-up study in 403 patients with coronary artery disease. J Am Coll Cardiol. 2002;40:1545–1550.

    PubMed  Google Scholar 

  119. Werner G, Surber R, Kuethe F, et al. Collaterals and the recovery of left ventricular function after recanalization of a chronic total coronary occlusion. Am Heart J. 2005;149:129–317.

    PubMed  Google Scholar 

  120. Sobel B, Bresnahan G, Shell W, Yoder R. Estimation of infarct size in man and its relation to prognosis. Circulation. 1972;46:640–647.

    PubMed  CAS  Google Scholar 

  121. Roberts R, Henry P, Sobel B. An improved basis for enzymatic estimation of infarct size. Circulation. 1975;52:743–754.

    PubMed  CAS  Google Scholar 

  122. Hirai T, Fujita M, Nakajima H, et al. Importance of collateral circulation for prevention of left ventricular aneurysm formation in acute myocardial infarction. Circulation. 1989;79:791–796.

    PubMed  CAS  Google Scholar 

  123. Habib GB, Heibig J, Forman SA, et al. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation. 1991;83:739–746.

    PubMed  CAS  Google Scholar 

  124. Sabia P, Powers E, Ragosta M, Sarembock I, Burwell L, Kaul S. An association beween collateral blood flow and myocardial viability in patients with recent myocardial infraction. N Engl J Med. 1992;327:1825–1831.

    PubMed  CAS  Google Scholar 

  125. Christian T, Schwartz R, Gibbons R. Determinants of infarct size in reperfusion therapy for acute myocardial infarction. Circulation. 1992;86:81–90.

    PubMed  CAS  Google Scholar 

  126. Sorajja P, Gersh B, Mehran R, Lansky A, Krucoff M, Webb J, Cox D, Brodie B, Stone G. Impact of collateral flow on myocardial reperfusion and infarct size in patients undergoing primary angioplasty for acute myocardial infarction. Am Heart J. 2007;154:379–384.

    PubMed  Google Scholar 

  127. Elhendy A, Cornel J, Roelandt J, et al. Impact of severity of coronary artery stenosis and the collateral circulation on the functional outcome of dyssynergic myocardium after revascularization in patients with healed myocardial infarction and chronic left ventricular dysfunction. Am J Cardiol. 1997;79:883–888.

    PubMed  CAS  Google Scholar 

  128. Waldecker B, Waas W, Haberbosch W, Voss R, Wiecha J, Tillmanns H. Prevalence and significance of coronary collateral circulation in patients with acute myocardial infarct. Z Kardiol. 2002;91:243–248.

    PubMed  CAS  Google Scholar 

  129. de Boer M, Reiber J, Suryapranata H, van den Brand M, Hoorntje J, F Z. Angiographic findings and catheterization laboratory events in patients with primary coronary angioplasty or streptokinase therapy for acute myocardial infarction. Eur Heart J. 1995;16:1347–1355.

    PubMed  Google Scholar 

  130. Schwartz H, Leiboff R, Bren G, et al. Temporal evolution of the human coronary collateral circulation after myocardial infarction. J Am Coll Cardiol. 1984;4:1088–1093.

    PubMed  CAS  Google Scholar 

  131. Pérez-Castellano N, Garcia E, Abeytua M, et al. Influence of collateral circulation on in-hospital death from anterior acute myocardial infarction. J Am Coll Cardiol. 1998;31:512–518.

    PubMed  Google Scholar 

  132. Regieli J, Jukema J, Nathoe H, et al. Coronary collaterals improve prognosis in patients with ischemic heart disease. Int J Cardiol. 2008;31:Epub ahead of print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Seiler, C. (2009). Relevance of the Human Coronary Collateral Circulation. In: Collateral Circulation of the Heart. Springer, London. https://doi.org/10.1007/978-1-84882-342-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-342-6_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-341-9

  • Online ISBN: 978-1-84882-342-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics