Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

At the present time, optical transmission systems are capable of sending data over hundreds of wavelengths on a single fiber thanks to dense wavelength division multiplexing (DWDM) technologies, reaching bit rates on the order of gigabits per second per wavelength and terabits per second per fiber. In the last decade the availability of such a huge bandwidth caused transport networks to be considered as having infinite capacity. The recent massive deployment of Asymmetric Digital Subscriber Line (ADSL) and broadband wireless access solutions, as well as the outburst of new multimedia network services (such as Skype, YouTube, Joost, etc.) caused a significant increase of end user traffic and bandwidth demands. Therefore, the apparently “infinite” capacity of optical networks appears much more “finite” today, despite the latest developments in photonic transmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chiaroni, D. (2003). Packet switching matrix: A key element for the backbone and the metro. IEEE Journal on Selected Areas in Communications 21(7), 1018–1025. DOI 10.1109/ JSAC.2003.816569.

    Article  Google Scholar 

  2. Chlamtac, I., Farago, A., and Zhang, T. (1996). Lightpath (wavelength) routing in large WDM networks. IEEE Journal on Selected Areas in Communications 14(5), 909–913. DOI 10.1109/ 49.510914.

    Article  Google Scholar 

  3. Cho, H., Kapur, P., and Saraswat, K.C. (2004). Power comparison between high-speed electrical and optical interconnects for interchip communication. Journal of Lightwave Technology 22(9), 2021–2033. DOI 10.1109/JLT.2004.833531.

    Article  Google Scholar 

  4. Cisco Systems, I. (2004). Next-generation networks and the cisco carrier routing systems. URL http://www.cisco.com/warp/public/cc/pd/rt/12000/clc/prodlit/r% eqng_wp.pdf.

    Google Scholar 

  5. Dittmann, L. et al. (2003). The European IST project DAVID: A viable approach towards optical packet switching. IEEE Journal on Selected Areas in Communications 21(7), 1026–1040.

    Article  Google Scholar 

  6. Gambini, P., Renaud, M., Guillemot, F. et al. (1998). Transparent optical packet switching: Network architecture and demonstrators in the KEOPS project. IEEE Journal on Selected Areas in Communications 16(7), 1245–1259. DOI 10.1109/49.725193.

    Article  Google Scholar 

  7. Gripp, J., Duelk, M., Simsarian, J.E., et al. (2003). Optical switch fabrics for ultra-high-capacity IP routers. Journal of Lightwave Technology 21(11), 2839–2850. DOI 10.1109/ JLT.2003.819150.

    Article  Google Scholar 

  8. Guillemot, C., Renaud, M., Gambini, P., et al. (1998). Transparent optical packet switching: The European ACTS KEOPS project approach. IEEE/OSA Journal of Lightwave Technology 16(12), 2117–2134.

    Article  Google Scholar 

  9. Hill, A. and Neri, F. (2001). Optical switching networks: From circuits to packets. IEEE Communications Magazine 39(3), 107–108. DOI 10.1109/MCOM.2001.910597.

    Article  Google Scholar 

  10. Kitayama, K. (1998). Code division multiplexing lightwave networks based upon optical code conversion. IEEE Journal on Selected Areas in Communications 16(7), 1309–1319. DOI 10.1109/49.725198.

    Article  Google Scholar 

  11. Kitayama, K., Kataoka, N., Yoshima, S., et al. (2006). Optical code label switching and its applications. In: Photonics in Switching, 2006. PS ’06. International conference on photonics in switching, pp. 1–3. DOI 10.1109/ PS.2006.4350164.

    Google Scholar 

  12. Kitayama, K.I. and Wada, N. (1999). Photonic IP routing. IEEE Photonics Technology Letters 11(12), 1689–1691. DOI 10.1109/68.806889.

    Article  Google Scholar 

  13. Listanti, M., Eramo, V., and Sabella, R. (2000). Architectural and technological issues for future optical internet networks. IEEE Communications Magazine 38(9), 82–92. DOI 10.1109/35.868147.

    Article  Google Scholar 

  14. Mukherjee, B., Banerjee, D., Ramamurthy, S., et al. (1996). Some principles for designing a wide-area WDM optical network. IEEE/ACM Transactions on Networking 4(5), 684–696. DOI 10.1109/90.541317.

    Article  Google Scholar 

  15. Qiao, C. and Yoo, M. (1999). Optical burst switching (OBS): A new paradigm for an optical Internet. Journal of High Speed Networks 8(1), 69–84.

    Google Scholar 

  16. Renaud, M., Bachmann, M., and Erman, M. (1996). Semiconductor optical space switches. IEEE Journal of Selected Topics in Quantum Electronics 2(2), 277–288. DOI 10.1109/2944.577378.

    Article  Google Scholar 

  17. Soulage, G., Doussiere, P., Jourdan, A., et al. (2004). Clamped gain travelling wave semiconductor optical amplifier as a large dynamic range optical gate. In: Proccedings of ECOC.

    Google Scholar 

  18. Turner, J.S. (1999). Terabit burst switching. Journal of High Speed Networks 8(1), 3–16.

    Google Scholar 

  19. Wada, N., Cincotti, G., Yoshima, S., et al. (2006). Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers—Part II: Experiments and applications. IEEE/OSA Journal of Lightwave Technology 24(1), 113–121.

    Article  Google Scholar 

  20. Wolfson, D., Fjelde, T., Kloch, A., et al. (2000). All-optical wavelength conversion scheme in SOA-based interferometric devices. Electronics Letters 36(21), 1794–1795. DOI 10.1049/ el:20001245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Callegati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Callegati, F., Aracil, J., López, V. (2009). Introduction. In: Aracil, J., Callegati, F. (eds) Enabling Optical Internet with Advanced Network Technologies. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-278-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-278-8_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-277-1

  • Online ISBN: 978-1-84882-278-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics