Skip to main content

Heart–Lung Interactions

  • Chapter
  • First Online:
Critical Care of Children with Heart Disease
  • 3887 Accesses

Abstract

One of the key functions of the respiratory and circulatory systems is to transfer oxygen from the atmosphere to the tissues, and carbon dioxide from the tissues to the atmosphere. To accomplish this, the two systems need to act in concert and consequently interact with each other in many different ways. Broadly, these interactions can be classified into neural, humoral, functional, and mechanical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Somers VK, Mark AL, Zavala DC, Abboud FM. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol. 1989;67:2101–2106.

    PubMed  CAS  Google Scholar 

  2. Said SI. Neurohumoral aspects of respiratory-cardiovascular interactions. In: Scharf SM, Pinsky MR, Magder S, eds. Respiratory-circulatory interactions in health and disease. New York: Marcel Dekker; 2001:427–446.

    Google Scholar 

  3. Taha BH, Simon PM, Dempsey JA, Skatrud JB, Iber C. Respiratory sinus arrhythmia in humans: an obligatory role for vagal feedback from the lungs. J Appl Physiol. 1995;78:638–645.

    PubMed  CAS  Google Scholar 

  4. Guyton AC, Lindsey AW, Abernathy B, Ricardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189:609–615.

    PubMed  CAS  Google Scholar 

  5. Fessler HE, Brower RG, Shapiro EP, Permutt S. Effects of positive end-expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Respir Dis. 1993;148:1657–1664.

    Article  PubMed  CAS  Google Scholar 

  6. Howell JBL, Permutt S, Proctor DF, Riley RL. Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol. 1961;16:71–76.

    PubMed  CAS  Google Scholar 

  7. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–724.

    PubMed  CAS  Google Scholar 

  8. Fuhrman BP, Smith-Wright DL, Venkataraman S, Howland DF. Pulmonary vascular resistance after cessation of positive end-expiratory pressure. J Appl Physiol. 1989;66:660–668.

    PubMed  CAS  Google Scholar 

  9. Venkataraman ST, Fuhrman BP, Howland DF, DeFrancisis M. Positive end-expiratory pressure-induced, calcium-channel-mediated increases in pulmonary vascular resistance in neonatal lambs. Crit Care Med. 1993;21:1066–1076.

    Article  PubMed  CAS  Google Scholar 

  10. Cassidy S, Mitchell JH, Johnson RL. Dimensional analysis of right and left ventricles during positive-pressure ventilation in dogs. Am J Physiol. 1982;242:H549–H556.

    PubMed  CAS  Google Scholar 

  11. Roussos C, Macklem PT. The respiratory muscles. N Engl J Med. 1982;307:7867–7897.

    Article  Google Scholar 

  12. Aubier M, Trippenbach T, Roussos C. Respiratory muscle fatigue during cardiogenic shock. J Appl Physiol. 1981;51:499–508.

    PubMed  CAS  Google Scholar 

  13. Magder SA, Georgiadis G, Tuck C. Respiratory variations in right atrial pressure predict response to fluid challenge. J Crit Care. 1992;7:76–85.

    Article  Google Scholar 

  14. Coriat P, Vrillon M, Perel A, et al. A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg. 1994;78:46–53.

    Article  PubMed  CAS  Google Scholar 

  15. Ornstein E, Eidelman LA, Drenger B, Elami A, Pizov R. Systolic pressure variation predicts the response to acute blood loss. J Clin Anesth. 1998;10:137–140.

    Article  PubMed  CAS  Google Scholar 

  16. Rooke GA, Schwid HA, Shapira Y. The effect of graded hemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg. 1995;80:925–932.

    PubMed  CAS  Google Scholar 

  17. Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–138.

    PubMed  CAS  Google Scholar 

  18. Pinsky MR, Summer WR, Wise RA, Permutt S, Bromberger-Barnea B. Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol. 1983;54:950–955.

    PubMed  CAS  Google Scholar 

  19. Aubier M, Viires N, Syllie G, Mozes R, Roussos C. Respiratory muscle contribution to lactic acidosis in low cardiac output. Am Rev Respir Dis. 1982;126:648.

    PubMed  CAS  Google Scholar 

  20. Shepard FM, Arango LA, Simmons JG, Berry FA. Hemodynamic effects of mechanical ventilation in normal and distressed lambs: a comparison of negative pressure and positive pressure respirators. Biol Neonate. 1071;19:83.

    Google Scholar 

  21. Raine J, Redington AN, Benatar A, Samuels MP, Southall DP. Continuous negative extrathoracic pressure and cardiac output – a pilot study. Eur J Pediatr. 1993;152:595–598.

    Article  PubMed  CAS  Google Scholar 

  22. Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation. 1997;96:3934–3942.

    Article  PubMed  CAS  Google Scholar 

  23. Shekerdemian LS, Bush A, Lincoln C, Shore DF, Petros AJ, Redington AN. Cardiopulmonary interactions in healthy children and children after simple cardiac surgery: the effects of positive and negative pressure ventilation. Heart. 1997;78:587–593.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekhar T. Venkataraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Venkataraman, S.T. (2009). Heart–Lung Interactions. In: Munoz, R., Morell, V., Cruz, E., Vetterly, C. (eds) Critical Care of Children with Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84882-262-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-262-7_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-261-0

  • Online ISBN: 978-1-84882-262-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics