Skip to main content

Transport Biofuels: Their Characteristics, Production and Costs

  • Chapter
Biofuels for Road Transport

Part of the book series: Green Energy and Technology ((GREEN))

  • 1359 Accesses

Abstract

Use of biofuels dates from the early days of the Diesel engine and the Otto motor that currently dominate road transport. After being replaced by fossil fuels, transport biofuels currently make a come-back. Use of transport biofuels has expanded rapidly since 2004 and this in turn has sparked a debate about their pros and cons. This chapter discusses current and proposed transport fuels, their production and costs. Key issues in the current biofuel debate, such as impact on food prices and the contribution to energy security, are introduced as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdullah AZ, Razali N, Mootabadi H, Salamatinia B (2007) Critical technical areas for future improvement in biodiesel technologies. Environ Res Lett 2:034001

    Google Scholar 

  • Acharya V, Young BR (2008) A review of the potential of bio-ethanol in New Zealand. B Sci Technology & Society 28:143–148

    Google Scholar 

  • Achten WMJ, Verschot L, Franken VJ, Mathijs E, Singh VP, Aerts R, Muys B (2009) Jatropha biodiesel production and use. Biomass Bioenerg in press

    Google Scholar 

  • Agarwal D, Agarwal AK (2007) Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl Therm Eng 27:2314–2323

    Google Scholar 

  • Agnolucci P (2007) Hydrogen infrastructure for the transport sector. Int J Hydrogen Energ 32:3526–3544

    Google Scholar 

  • Ahman M, Nilsson LJ (2008) Path dependency and the future of advanced vehicles and biofuels. Utilities Policy 16:80–8

    Google Scholar 

  • Alimahmoodi M, Mulligan CN (2008) Anaerobic bioconversion of carbon dioxide to biogas in an upflow anaerobic sludge blanket reactor. J Air Waste Manag Assoc 58:95–103

    Google Scholar 

  • Amigun B, Sigamoney R, von Blottnitz H (2008) Commercialisation of biofuel industry in Africa: a review. Renew Sust Energ Rev 12:690–711

    Google Scholar 

  • Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366

    Google Scholar 

  • Andersson E, Harvey S (2006) System analysis of hydrogen production from gasified black liquor. Energy 31:3426–3434

    Google Scholar 

  • Angenent LT (2007) Energy biotechnology: beyond the general lignocellulose-to-ethanol pathway. Curr Opin Biotechnol 18:191–192

    Google Scholar 

  • Anonymous (2006) DME – the diesel alternative which is easy to dismiss, but hard to beat. Hydrocarbon Processing Magazine March:29–30

    Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Google Scholar 

  • Archer D (2005) Fate of fossil fuel CO2 in geologic time. J Geophys Res 110:C09S05

    Google Scholar 

  • Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87:1014–1030

    Google Scholar 

  • Arifeen N, Wang R, Kookos I, Webb C, Koutinas AA (2007) Optimization and cost estimation of novel wheat biorefining for continuous production of fermentation feedstock. Biotechnol Progr 23:872–880

    Google Scholar 

  • Ashley S (2008) Cellulose success. Sci Am 298(4):32–33

    Google Scholar 

  • Astbury GR, Hawksworth SJ (2007) Spontaneous ignition of hydrogen leaks: a review of postulated mechanisms. Int J Hydrogen Energ 32:2178–2185

    Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Google Scholar 

  • Bagajewicz M, Sujo D, Martinez D, Savelski M (2007) Driving without petroleum? A comparative guide to biofuels, gas-to-liquids and coal-to-liquids as fuels for transportation. Energy Charter Secretariat, Brussels

    Google Scholar 

  • Bagi Z, Ács N, Bálint B, Horváth L, Dobó K, Perei KR, Rákhely G, Kovács KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76:473–482

    Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Google Scholar 

  • Barelli L, Bidini G, Gallorini F, Servili S (2008) Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy 33:554–570

    Google Scholar 

  • Barlaz MA (2006) Forest products decomposition in municipal solid waste landfills. Waste Manage 26:321–333

    Google Scholar 

  • Barrett D (2007) Experts address the question: given its relatively high cost, is renewable energy the answer for SIDS? Nat Resour Forum 31:162

    Google Scholar 

  • Bastianoni S, Coppola F, Tiezzi E, Colacevich A, Borghini F, Focardi S (2008) Biofuel potential production from the Orbetello lagoon macroalgae: a comparison with sunflower feedstock. Biomass Bioenerg 32:619–628

    Google Scholar 

  • Ben-Amotz A, Sussman I, Avron M (1982) Glycerol production by Dunaliella. Experientia 38:49–52

    Google Scholar 

  • Bentley RW, Mannan SA, Wheeler SJ (2007) Assessing the date of the global oil peak: the need to use 2P reserves. Energ Policy 35:6364–6382

    Google Scholar 

  • Berggren M, Ljunggren E, Johnsson F (2008) Biomass co-firing potentials for electricity generation in Poland – matching supply and co-firing opportunities. Biomass and Bioenerg 32:865–879

    Google Scholar 

  • Berndes G, Hansson J (2007) Bioenergy expansion in the EU: cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels. Energ Policy 35:5965–5979

    Google Scholar 

  • Bideaux C, Alfenore S, Cameleyre X, Molina-Jouve C, Uribelarrea J, Guillouet SE (2006) Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool. Appl Exp Microbiol 72:2134–2140

    Google Scholar 

  • Blanch HW, Adams PD, Andrews-Cramer KM, Frommer WB, Simmons BA, Keasling JD (2008) Addressing the need for alternative transportation fuels: the Joint BioEnergy Institute. ACS Chem Biol 3(1):17–20

    Google Scholar 

  • Boateng AA, Anderson WF, Phillips JG (2007) Bermudagrass for biofuels: effect of two genotypes on pyrolysis product yield. Energ Fuel 21:1183–1187

    Google Scholar 

  • Bocher BT, Agler MT, Garcia ML, Beers AR, Angenent LT (2008) Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation. J Ind Microbiol Biotechnol 35:321–329

    Google Scholar 

  • Boer R, Wasrin UR, Perdinan, Hendri, Dasanto BD, Makundi W, Hero J, Ridwan M, Masripatin N (2007) Assessment of carbon leakage in multiple carbon-sink projects: a case study in Jambi Province, Indonesia. Mitigation Adaptation Strategies Global Change 12:1169–1188

    Google Scholar 

  • Borgwardt RH (1999) Transportation fuel from cellulosic biomass: a comparative assessment of ethanol and methanol options. P I Mech Eng A–J Pow 213:399–407

    Google Scholar 

  • Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Google Scholar 

  • Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Google Scholar 

  • Bryner M (2007a) DOE to make up to $385-million investment in six biorefinery projects. Chem Week March 7:11

    Google Scholar 

  • Bryner M (2007b) Alternative fuels. Chem Week December 13/20:18–20

    Google Scholar 

  • Bungay HR (2004) Confessions of a bioenergy advocate. Trends Biotechnol 22:67–71

    Google Scholar 

  • Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28:237–259

    Google Scholar 

  • Buschmann AH, Correa JA, Westermeier R, Hernández-González MdC, Norambuena R (2001) Red algal farming in Chile: a review. Aquaculture 194:203–220

    Google Scholar 

  • Bush GW (2006) State of the Union address. http://www.whitehouse.gov/stateoftheunion/2006/

  • Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441

    Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953

    Google Scholar 

  • Carcaillet C, Talon B (2001) Soil carbon sequestration by Holocene fires inferred from soil charcoal in the dry French Alps. Arct Antarct Alp Res 33:282–288

    Google Scholar 

  • Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617

    Google Scholar 

  • Cascone R (2007) Biofuels: what is beyond ethanol and biodiesel? Hydrocarbon Processing Magazine September:95–109

    Google Scholar 

  • Chalk SG, Miller JF (2006) Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sources 159:73–80

    Google Scholar 

  • Chang MCY (2007) Harnessing energy from plant biomass. Curr Opin Chem Biol 11:677–684

    Google Scholar 

  • Chapple C, Ladisch M, Meilan R (2007) Loosening lignin’s grip on biofuel production. Nat Biotechnol 25:746–748

    Google Scholar 

  • Cheng CH, Cheung CS, Chan TL, Lee SC, Yao CD, Tsang KS (2008) Comparison of emissions of a direct injection diesel engine operating on biodiesel with emulsified and fumigated methanol. Fuel 87:1870–1879

    Google Scholar 

  • Chiao J, Sun ZH (2007) History of the acetone-butanol-ethanol fermentation industry in China: development of continuous production technology. J Mol Microbiol Biotechnol 13:12–14

    Google Scholar 

  • China Chemical Reporter (2007) Develop bio-diesel and accelerate energy substitution. July 6:7

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key towards sustainability. J Phycol 37:975–986

    Google Scholar 

  • Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Google Scholar 

  • Cloin J (2007) Coconut oil as a fuel in the Pacific Islands. Nat Resour Forum 31:119–127

    Google Scholar 

  • Colella WG, Jacobson MZ, Golden DM (2005) Switching to a U.S. hydrogen fuel cell vehicle fleet: the resultant change in emissions, energy use, and greenhouse gases. J Power Sources 150:150–181

    Google Scholar 

  • Cooke FM (2002) Vulnerability, control and oil palm in Sarawak: globalization and a new era? Dev Change 33:189–211

    Google Scholar 

  • Coombs A (2007) Glycerin bioprocessing goes green. Nat Biotechnol 25:953–954

    Google Scholar 

  • Critchley AT, Ohno M, Largo DB (eds) (2006) World seaweed resources: an authoritative reference system. ETI Information Services, Wokingham (UK)

    Google Scholar 

  • da Costa MM, Cohen C, Schaeffer R (2007) Social features of energy production and use in Brazil: goals for a sustainable energy future. Nat Resour Forum 31:11–20

    Google Scholar 

  • Daggett DL, Hendricks RC, Walther R, Corporan E (2007) Alternate fuels for use in commercial aircraft. Boeing, Seattle

    Google Scholar 

  • Dale B (2008) Biofuels: thinking clearly about the issues. J Agric Food Chem 56:3885–3891

    Google Scholar 

  • Daschle T, Runge CF, Senauer B (2007) Debating the tradeoffs of corn-based ethanol: myth versus reality. Foreign Affairs September/October

    Google Scholar 

  • de la Rue du Can S, Price L (2008) Sectoral trends in global energy use and greenhouse gas emissions. Energ Policy 36:1386–1403

    Google Scholar 

  • Delucchi MA, Lipman TE (2001) An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transport Res D–Tr E 6:371–404

    Google Scholar 

  • Delucchi MA, Murphy JJ (2008) US military expenditures to protect the use of Persian Gulf oil for motor vehicles. Energ Policy 36:2253–2264

    Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, Clostridia, and ethanol. Microbiol Mol Biol R 69:124–154

    Google Scholar 

  • Demiral J, Şensöz S (2006) Fixed-bed pyrolysis of hazelnut (Corylus Avellana L.) bagasse: influence of pyrolysis parameters on product yields. Energ Source Part A 28:1149–1158

    Google Scholar 

  • Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ Convers Manage 42:1357–1378

    Google Scholar 

  • Demirbaş A, Kara H (2006) New options for conversion of vegetable oils to alternative fuels. Energ Source 28:619–626(8)

    Google Scholar 

  • Demirbaş A (2007) Importance of biodiesel as transportation fuel. Energ Policy 35:4661–4670

    Google Scholar 

  • Demirbaş A (2008) Producing bio-oil from olive cake by fast pyrolysis. Energ Source Part A 30:38–44

    Google Scholar 

  • Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29:741–764

    Google Scholar 

  • de Vries BJM, van Vuuren DP, Hoogwijk MM (2007) Renewable energy sources: their global potential for the first-half of the 21st century at a global level: an integrated approach. Energ Policy 35:2590–2610

    Google Scholar 

  • Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combust 34:47–90

    Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:248–266

    Google Scholar 

  • Dietenberger MA, Anderson M (2007) Vision of the U.S. biofuel future: a case for hydrogen-enriched biomass gasification. Ind Eng Chem Res 46:8863–8874

    Google Scholar 

  • Di Lucia L, Nilsson LJ (2007) Transport biofuels in the European Union: the state of play. Transp Policy 14:533–543

    Google Scholar 

  • Dimitri C, Effland A (2007) Fueling the automobile: an economic exploration of early adoption of gasoline over ethanol. J Agric Food Ind Organ 5(2):article 11. http://www.bepress.com/jafio/vol5/iss2/art11

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Google Scholar 

  • Dobele G, Urbanovich I, Volpert A, Kampars V, Samulis E (2007) Fast pyrolysis – effect of wood drying on the yield and properties of bio-oil. BioResources 2:699–706

    Google Scholar 

  • Doering C (2008) US lawmakers urge scaling back biofuels mandate. Planet Ark May 7. http://www.planetark.com/dailynewsstory.cfm/newsid/48252/story.htm

  • Dondero L, Goldemberg J (2005) Environmental implications of converting light gas vehicles: the Brazilian experience. Energ Policy 33:1703–1708

    Google Scholar 

  • Dumas C, Basseguy R, Bergel A (2008) Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim Acta 53:2494–2500

    Google Scholar 

  • Dupain X, Costa DJ, Schaverien CJ, Makkee M, Moulijn JA (2007) Cracking of a rapeseed vegetable oil under realistic FCC conditions. Appl Catal B–Environ 72:44–61

    Google Scholar 

  • Dürre P (2008) Fermentative butanol production: bulk chemical and biofuel. Ann NY Acad Sci 1125:353–362

    Google Scholar 

  • Eaves J, Eaves S (2007) Renewable corn-ethanol and energy security. Energ Policy 35:5958–5963

    Google Scholar 

  • Eckmeier E, Rösch M, Ehrmann O, Schmidt MWI, Schier W, Gerlach R (2007) Conversion of biomass to charcoal and the carbon mass balance from a slash-and-burn experiment in a temperate deciduous forest. Holocene 17:539–542

    Google Scholar 

  • Eickhout B, van den Born GJ, Notenboom J, van Oorschot M, Ros JPM, van Vuuren DP, Westhoek HJ (2008) Local and global consequences of the EU renewable directive for biofuels. Milieu en Natuur Planbureau Bilthoven. http://www.mnp.nl

    Google Scholar 

  • Eijsink VGH, Vaaje-Kolstad G, Varum KM, Horn SJ (2008) Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 26:228–235

    Google Scholar 

  • El Bassam N (1998) C3 and C4 plant species as energy sources and their potential impact on environment and climate. Renew Energ 15:205–210

    Google Scholar 

  • Esler D (2007) Alternative fuels for jet engines. Business and Commercial Aviation 101:(3)01914624

    Google Scholar 

  • Ethnic Community Development Forum (2008) Biofuel by decree: unmasking Burma’s bio-energy fiasco. http://www.terraper.org/file_upload/BiofuelbyDecree.pdf

  • EUCAR, CONCAWE, European Commission JRC (2007) Well-to-wheels analysis of future automotive fuels and powertrains in the European context, vers 2c. http://ies.jrc.ec.europa.eu/uploads/media/WTW_Report_010307.pdf

  • European Union (2008) Directive on the promotion of the use of renewable energy sources. Brussels

    Google Scholar 

  • Ewers RM, Rodrigues ASL (2008) Estimates of reserve effectiveness are confounded by leakage. Trends Ecol Evol 23:113–116

    Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227

    Google Scholar 

  • Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87:1230–1240

    Google Scholar 

  • Fairless D (2007) Biofuel: the little shrub that could – maybe. Nature 449:652–655

    Google Scholar 

  • Felder R, Dones R (2007) Evaluation of ecological impacts of synthetic natural gas from wood used in current heating and car systems. Biomass Bioenerg 31:403–415

    Google Scholar 

  • Fernando S, Hanna M (2004) Development of a novel biofuel blend using ethanol-biodiesel-diesel microemulsions: EB-diesel. Energ Fuel 18:1695–1703

    Google Scholar 

  • Fernando S, Adhikari S, Kota K, Bandi R (2007) Glycerol based automotive fuels from future biorefineries. Fuel 86:2806–2809

    Google Scholar 

  • Ferreira-Aparicio P, Benito MJ, Sanz JL (2005) New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers. Catal Rev 47:491–588

    Google Scholar 

  • Florin NH, Harris AT (2008) Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chem Eng Sci 63:287–316

    Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381

    Google Scholar 

  • Fowles M (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioenerg 31:426–432

    Google Scholar 

  • Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29:12–24

    Google Scholar 

  • Frederick WJ Jr, Lien SJ, Courchene CE, DeMartini NA, Ragauskas AJ, Iisa K (2008) Production of ethanol from carbohydrates from loblolly pine: a technical and economic assessment. Bioresour Technol 99:5051–5057

    Google Scholar 

  • GAO (United States Government Accountability Office) (2007) Crude oil: uncertainty about future oil supply makes it important to develop a strategy for addressing a peak and decline in oil production. GAO-07-283. http://www.gao.gov/new.items/d07283.pdf

    Google Scholar 

  • Gassmann A, Cock MJW, Shaw R, Evans HC (2006) The potential for biological control of invasive alien aquatic weeds in Europe: a review. Hydrobiologia 570:217–222

    Google Scholar 

  • Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, Zaks D (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3:034001

    Google Scholar 

  • Gjoen H, Hard M (2002) Cultural politics in action: developing user scripts in relation to the electric vehicle. Sci Technol Hum Val 27:262–281

    Google Scholar 

  • Goldemberg J, Coelho ST, Nastari PM, Lucon O (2004) Ethanol learning curve – the Brazilian experience. Biomass Bioenerg 26:301–304

    Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485

    Google Scholar 

  • Gough CM, Vogel CS, Schmid HP, Curtis PS (2008) Controls on annual forest carbon storage: lessons from the past and predictions for the future. BioScience 58:609–622

    Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12:504–517

    Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Google Scholar 

  • Grimm C (1999) Evaluation of damage to physic nut (Jatropha curcas) by true bugs. Entomol Exp Appl 92:127–136

    Google Scholar 

  • Gross M (2008) Not in our backyard. Curr Biol 18:R227–R228

    Google Scholar 

  • Güllü D, Demirbaş A (2001) Biomass to methanol via pyrolysis process. Energ Convers Manage 42:1349–1356

    Google Scholar 

  • Gunnarsson CC, Petersen CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manage 27:117–129

    Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Google Scholar 

  • Gutierrez NA, Maddox IS, Schuster KC, Swoboda H, Gapes JR (1998) Strain comparison and medium preparation for the acetone-butanol-ethanol (ABE) fermentation process using a substrate of potato. Bioresour Technol 66:263–265

    Google Scholar 

  • Hahn JJ, Ghirardi ML, Jacoby WA (2007) Immobilized algal cells used for hydrogen production. Biochem Eng J 37:75–79

    Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Google Scholar 

  • Hall DO (1982) Solar energy through biology: fuels from biomass. Experientia 38:3–10

    Google Scholar 

  • Hall KR (2005) A new gas to liquids (GTL) or gas to ethylene (GTE) technology. Catal Today 106:243–246

    Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energ 27:1185–1193

    Google Scholar 

  • Hammerschlag R (2006) Ethanol’s energy return on investment: a survey of the literature 1990–present. Environ Sci Technol 40:1744–1750

    Google Scholar 

  • Hammond GP, Kallu S, McManus MC (2008) Development of biofuels for the UK automotive market. Appl Energ 85:506–515

    Google Scholar 

  • Han J, Kim H (2008) The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew Sust Energ Rev 12:397–416

    Google Scholar 

  • Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol Plantarum 131:10–21

    Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. P Natl Acad Sci USA 97:9875–9880

    Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J in press

    Google Scholar 

  • Harding KG, Dennis JS, von Blottnitz H, Harrison STL (2008) A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel. J Clean Prod 16:1368–1378

    Google Scholar 

  • Haryanto A, Fernando S, Adhikari S (2007) Ultrahigh temperature water gas shift catalysts to increase hydrogen yield from biomass gasification. Catal Today 129:269–274

    Google Scholar 

  • Hayes DJ (2008) An examination of biorefining processes, catalysts and challenges. Catal Today in press

    Google Scholar 

  • Healy SA (1994) The recent European biofuel debate as a case study in the politics of renewable energy. Renew Energ 5:875–877

    Google Scholar 

  • Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG, Long SP (2008) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotechnol 19:202–209

    Google Scholar 

  • Heiman MK, Solomon BD (2007) Fueling US transportation: the hydrogen economy and its alternatives. Environment 49(8):10–25

    Google Scholar 

  • Heinimö J (2008) Methodological aspects on international biofuels trade: international streams and trade of solid and liquid biofuels in Finland. Biomass Bioenerg 32:702–716

    Google Scholar 

  • Helle SS, Lin T, Duff SJB (2008) Optimization of spent sulfite liquor fermentation. Enzyme Microb Technol 42:259–264

    Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    Google Scholar 

  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404

    Google Scholar 

  • Holmgren J, Gosling C, Marinangeli R, Marker T, Faraci G, Perego C (2007) New developments in renewable fuels offer more choices. Hydrocarbon Processing Magazine September:67–71

    Google Scholar 

  • Horn SJ, Aasen IM, Østgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254

    Google Scholar 

  • Høyer KG (2008) The history of alternative fuels in transportation: the case of electric and hybrid cars. Utilities Policy 16:63–71

    Google Scholar 

  • Huang H, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62:1–21

    Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation Adaptation Strategies Global Change 12:573–608

    Google Scholar 

  • Hussain MM, Dincer I, Li X (2007) A preliminary life cycle assessment of PEM fuel cell powered automobiles. Appl Therm Eng 27:2294–2299

    Google Scholar 

  • Janssen A, Lienin SF, Gassmann F, Wokaun A (2006) Model aided policy development for the market penetration of natural gas vehicles in Switzerland. Transport Res A–Pol 40:316–333

    Google Scholar 

  • Joelianingsih, Maeda H, Hagiwara S, Nabetani H, Sagara Y, Soerawidjaya TH, Tambunan AH, Abdullah K (2008) Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric temperature: a kinetic study. Renew Energ 33:1629–1636

    Google Scholar 

  • Joelsson JM, Gustavsson L (2008) CO2 emission and oil use reduction through black liquor gasification and energy efficiency in pulp and paper industry. Resour Conserv Recy 52:747–763

    Google Scholar 

  • Johansson B (1999) The economy of alternative fuels when including the cost of air pollution. Transport Res D–Tr E 4:91–108

    Google Scholar 

  • Johnston M, Holloway T (2007) A global comparison of national biodiesel production potentials. Environ Sci Technol 41:7967–7973

    Google Scholar 

  • Joint I, Henriksen P, Garde K, Riemann B (2002) Primary production, nutrient assimilation and microzooplankton grazing along a hypersaline gradient. FEMS Microbiol Ecol 39:245–257

    Google Scholar 

  • Jones PR (2008) Improving fermentative biomass-derived H2-production by engineering microbial metabolism. Int J Hydrogen Energ 33:5122–5130

    Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Mol Biol Rev 50:484–524

    Google Scholar 

  • Junginger M, de Wit M, Sikkema R, Faaij A (2008) International bioenergy trade in the Netherlands. Biomass Bioenerg 32:672–687

    Google Scholar 

  • Kadam KL, Chin CY, Brown LW (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J Ind Microbiol Biotechnol 35:331–341

    Google Scholar 

  • Kalita D (2008) Hydrocarbon plant – new source of energy for future. Renew Sust Energ Rev 12:455–471

    Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Google Scholar 

  • Kamimura A, Sauer IL (2008) The effect of flex fuel vehicles in the Brazilian light road transportation. Energ Policy 36:1574–1576

    Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Google Scholar 

  • Kamm J (2004) A new class of plants for a biofuel feedstock energy crop. Appl Biochem Biotechnol 113:55–70

    Google Scholar 

  • Kaufmann RK, Shiers LD (2008) Alternatives to conventional crude oil: when, how quickly, and market driven? Ecol Econ 67:405–411

    Google Scholar 

  • Kegl B (2008) Effects of biodiesel on emissions of a bus diesel engine. Bioresour Technol 99:863–873

    Google Scholar 

  • Kerschbaum S, Rinke G, Schubert K (2008) Winterization of biodiesel by micro process engineering. Fuel 87:2590–2597

    Google Scholar 

  • Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Annu Rev Energ Env 25:199–244

    Google Scholar 

  • Kheshgi HS, Prince RC (2005) Sequestration of fermentation CO2 from ethanol production. Energy 30:1865–1871

    Google Scholar 

  • Kirilenko AP, Sedjo RA (2007) Climate change impacts on forestry. P Natl Acad Sci USA 104:19697–19702

    Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212

    Google Scholar 

  • Kleiner K (2007) Civil aviation faces green challenge. Nature 448:120–121

    Google Scholar 

  • Kleinert M, Barth T (2008) Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel. Energ Fuel 22:1371–1379

    Google Scholar 

  • Knothe G (2001) Historical perspectives on vegetable oil-based diesel fuels. Inform 12:1103–1107

    Google Scholar 

  • Koizumi T, Ohga K (2007) Biofuels policies in Asian countries: impact of the expanded biofuels programs on world agricultural markets. J Agric Food Ind Organ 5(2):article 8. http://www.bepress.com/jafio/vol5/iss2/art8/

  • Kondarides DI, Daskalaki VM, Patsoura A,Verykios XE (2008) Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catal Lett 122:26–32

    Google Scholar 

  • Körbitz W (1999) Biodiesel production in Europe and North America, an encouraging prospect. Renew Energ 16:1078–1083

    Google Scholar 

  • Lache R, Galves D, Nolan P (2008) Electric cars: plugged in. Deutsche Bank Securities Inc., New York

    Google Scholar 

  • Lachke A (2002) Biofuel from d-xylose – the second most abundant sugar. Resonance 7:50–58

    Google Scholar 

  • Lamers P, McCormick K, Hilbert JA (2008) The emerging liquid biofuel market in Argentina: implications for domestic demand and international trade. Energ Policy 36:1479–1490

    Google Scholar 

  • Lange JP (2007) Lignocellulose conversion: an introduction into chemistry, process and economics. Biofuel Bioprod Biorefining 1:39–48

    Google Scholar 

  • Lapeña-Rey N, Mosquera J, Bataller E, Orti F, Dudfield C, Orsillo A (2008) Environmentally friendly power sources for aerospace applications. J Power Sources 181:353–362

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitigation Adaptation Strategies Global Change 11:395–419

    Google Scholar 

  • Lehtomäki A, Huttunen S, Lehtinen TM, Rintala JA (2008) Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour Technol 99:3267–3278

    Google Scholar 

  • Lewis K (1966) Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells. Bacteriol Rev 30:101–113

    Google Scholar 

  • Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10:177–182

    Google Scholar 

  • Li X, Lu G, Guo Y, Guo Y, Wang Y, Zhang Z, Liu X, Wang Y (2007) A novel solid superbase of Eu2O3/Al2O3 and its catalytic performance for the transesterification of soybean oil to biodiesel. Catal Commun 8:1969–1972

    Google Scholar 

  • Licht FO (2006) World Ethanol and Biofuels Report

    Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Google Scholar 

  • Littlefield S, Nickens A (2005) Roadmap for the all-electric warship. Power 149(1):46–50

    Google Scholar 

  • Liu Z, Wang G, Zhou B (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Google Scholar 

  • Long CJ, Whitlock C, Bartlein PJ (2007) Holocene vegetation and fire history of the Coast Range, western Orgeon, USA. Holocene 17:917–926

    Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Ann Rev Energ Env 21:403–465

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Google Scholar 

  • Mabee W, Roy DN (2003) Modeling the role of papermill sludge in the organic carbon cycle of paper products. Environ Rev 11:1–16

    Google Scholar 

  • Macedo IC, Seabra JEA, Silva JEAR (2008) Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenerg 32:582–595

    Google Scholar 

  • MacLean HL, Lave LB (2003) Evaluating automobile fuel/propulsion system technologies. Prog Energ Combust 29:1–69

    Google Scholar 

  • Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138

    Google Scholar 

  • Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sust Energ Rev 11:1300–1311

    Google Scholar 

  • Markert F, Nielsen SK, Paulsen JL, Andersen V (2007) Safety aspects of future infrastructure scenarios with hydrogen refuelling stations. Int J Hydrogen Energ 32:2227–2234

    Google Scholar 

  • Marques S, Alves L, Roseiro JC, Girio FM (2008) Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass Bioenerg 32:400–406

    Google Scholar 

  • Mathews JA (2008a) Carbon-negative biofuels. Energ Policy 36:940–945

    Google Scholar 

  • Mathews JA (2008b) Towards a sustainably certifiable futures contract for biofuels. Energ Policy 36:1577–1583

    Google Scholar 

  • Matheys J, van Autenboer W, Timmermans J, van Mierlo J, van den Bossche P, Maggetto G (2007) Influence of functional unit on the life cycle assessment of traction batteries. Int J Life Cycle Ass 12:191–196

    Google Scholar 

  • Mayer J (2008) Borneo project: burning for biofuels. Earth Isl J March 22

    Google Scholar 

  • McCann MC, Carpita NC (2008) Designing the deconstruction of plant cell walls. Curr Opin Plant Biol 11:314–320

    Google Scholar 

  • McElroy AK (2007) Not so run of the mill. Biomass Magazine October. http://www.biomassmagazine.com/article.jsp?article_id=1297

  • Melaina MW (2007) Turn of the century refueling: a review of innovations in early gasoline refueling methods and analogies for hydrogen. Energ Policy 35:4919–4934

    Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production: green algae as a source of energy. Plant Physiol 127:740–748

    Google Scholar 

  • Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrogen Energ 31:1563–1573

    Google Scholar 

  • Mikkonen S (2008) Second-generation renewable diesel offers advantages. Hydrocarbon Processing Magazine 87:63–68

    Google Scholar 

  • Milne TA, Evans RJ, Nagle N (1990) Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites. Biomass 21:219–232

    Google Scholar 

  • Mom G (1997) Das ‘Scheitern’ des frühen Elektromobils (1895–1925). Versuch einer Neubewertung. Technikgeschichte 64:269–285

    Google Scholar 

  • Mom GPA, Kirsch DA (2001) Technologies in tension: horses, electric trucks, and the motorization of American cities, 1900–1925. Technol Cult 42:489–518

    Google Scholar 

  • Monfort J (2008) Despite obstacles, biofuels continue surge. World Watch 21(4):34–35

    Google Scholar 

  • Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenerg 32:216–223

    Google Scholar 

  • Morand P, Merceron M (2005) Microalgal population and sustainability. J Coastal Res 21:1009–1020

    Google Scholar 

  • Moreira JR (2006) Global biomass energy potential. Mitigation Adaptation Strategies Global Change 11:313–333

    Google Scholar 

  • Müller-Hagedorn M, Bockhorn H (2007) Pyrolytic behaviour of different biomasses (angiosperms) (maize plants, straws, and wood) in low temperature pyrolysis. J Anal Appl Pyrol 79:136–146

    Google Scholar 

  • Murphy JD, McCarthy K (2005) The optimal production of biogas for use as a transport fuel in Ireland. Renew Energ 30:2111–2127

    Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Google Scholar 

  • Nathan S (2007) Field of dreams? Engineer July–August:20–24

    Google Scholar 

  • Naylor RL, Liska AJ, Burke MB, Falcon WP, Gaskell JC, Rozelle SD, Cassman KG (2007) The ripple effect: biofuels, food security, and the environment. Environment 49(9):30–43

    Google Scholar 

  • Nepstad DC, Stickler CM, Soares-Filho B, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos T R Soc B 363:1737–1746

    Google Scholar 

  • Neushul P (1989) Seaweed for war: California’s World War I kelp industry. Technol Cult 30:561–583

    Google Scholar 

  • Neushul P, Badash L (1998) Harvesting the Pacific: the blue revolution in China and the Philippines. Osiris 13:186–209

    Google Scholar 

  • Neushul P, Wang Z (2000) Between the devil and the deep sea: C.K. Tseng, mariculture, and the politics of science in modern China. Isis 91:59–88

    Google Scholar 

  • Ng HD, Lee JHS (2008) Comments on explosion problems for hydrogen safety. J Loss Prevent Proc 21:136–146

    Google Scholar 

  • Ng TK, Busche RM, McDonald CC, Hardy RWF (1983) Production of feedstock chemicals. Science 219:733–740

    Google Scholar 

  • Nguyen TLT, Gheewala SH, Garivait S (2008) Full chain energy analysis of fuel ethanol from cane molasses in Thailand. Appl Energ 85:722–734

    Google Scholar 

  • Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrogen Energ 32:3238–3247

    Google Scholar 

  • Nicholls K, Campos S (2007) Are you driving on blood fuel? Ecologist 37(7):44–48

    Google Scholar 

  • Numan MT, Bhosle NB (2006) α-l-Arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260

    Google Scholar 

  • Odada EO, Olago DO (2006) Challenges of an ecosystem approach to water monitoring and management of the African Great Lakes. Aquatic Ecosystem Health & Management 9:433–446

    Google Scholar 

  • OECD (2008) Economic assessment of biofuel support policies. OECD directorate for trade and agriculture, Paris

    Google Scholar 

  • OECD-FAO (2007) OECD-FAO Agricultural Outlook 2007–2016. OECD, Paris

    Google Scholar 

  • Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7

    Google Scholar 

  • Ooi Y, Bhatia S (2007) Aluminum-containing SBA-15 as cracking catalyst for the production of biofuel from waste used palm oil. Micropor Mesopor Mat 102:310–317

    Google Scholar 

  • Oxfam (2007) Biofuelling poverty. Oxfam, Oxford

    Google Scholar 

  • Özbay N, Oktar N, Tapan NA (2008) Esterification of free fatty acids in waste cooking oils (WCO): role of ion-exchange resins. Fuel 87:1789–1798

    Google Scholar 

  • Pahkala K, Aalto M, Isolahti M, Poikola J, Jauhiainen L (2008) Large-scale energy grass farming for power plants – a case study from Ostrobothnia, Finland. Biomass Bioenerg 32:1009–1015

    Google Scholar 

  • Palmarola-Adrados B, Choteborská P, Galbe M, Zacchi G (2005) Ethanol production from non-starch carbohydrates of wheat bran. Bioresour Technol 96:843–850

    Google Scholar 

  • Park Y, Lee D, Kim D, Lee J, Lee K (2008) The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal Today 131:238–243

    Google Scholar 

  • Pigou AC (1920) The economics of welfare. MacMillan Company, London

    Google Scholar 

  • Piringer G, Steinberg LJ (2006) Reevaluation of energy use in wheat production in the United States. J Ind Ecol 10:149–167

    Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recy 50:1–39

    Google Scholar 

  • Ptasinski KJ, Hamelinck C, Kerkhof PJAM (2002) Exergy analysis of methanol from the sewage sludge process. Energ Convers Manage 43:1445–1457

    Google Scholar 

  • Quadrelli R, Peterson S (2007) The energy–climate challenge: recent trends in CO2 emissions from fuel combustion. Energ Policy 35:5938–5952

    Google Scholar 

  • Qureshi N, Blaschek HP (2001) ABE production from corn: a recent economic evaluation. J Ind Microbiol Bitechnol 27:292–297

    Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008a) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii. Biomass Bioenerg 32:168–175

    Google Scholar 

  • Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008b) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922

    Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Cotta MA (2008c) Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenerg in press

    Google Scholar 

  • Radich A (2004) Biodiesel performance, costs, and use. http://www.eia.doe.gov/oiaf/analysispaper/biodiesel/

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Google Scholar 

  • Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Google Scholar 

  • Rantanen L, Linnaila R, Aakko P, Harju T (2005) NExBTL–Biodiesel fuel of the second generation. SAE International. http://www.nesteoil.com/default.asp?path=1,41,539,7516,7522

    Google Scholar 

  • Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380

    Google Scholar 

  • Reed TB, Lerner RM (1973) Methanol: a versatile fuel for immediate use. Science 182:1299–1304

    Google Scholar 

  • Reijnders L, Huijbregts MAJ (2005) Life cycle emissions of greenhouse gases associated with burning animal wastes in countries of the European Union. J Clean Prod 13:51–56

    Google Scholar 

  • Reijnders L, Huijbregts MAJ (2007) Life cycle greenhouse gas emissions, fossil fuel demand and solar energy conversion efficiency in European bioethanol production for automotive purposes. J Clean Prod 15:1806–1812

    Google Scholar 

  • Reijnders L, Huijbregts MAJ (2008) Palm oil and the emission of carbon-based greenhouse gases. J Clean Prod 16:477–482

    Google Scholar 

  • Reinhardt G, Gärtner S, Patyk A, Rettenmaier N (2006) Ökobilanzen zu BTL: Eine ökologische Einschätzung. [Biomass to liquids: an environmental assessment]. Institut für Energie- und Umweltforschung Heidelberg GmbH, Heidelberg

    Google Scholar 

  • Reinharz J (1985) Science in the service of politics: the case of Chaim Weizmann during the First World War. Engl Hist Rev 100:572–603

    Google Scholar 

  • Renewable Fuels Agency (2008) The Gallagher review of the indirect effects of biofuels. Renewable Fuels Agency, St Leonards-on-Sea (East Sussex, UK)

    Google Scholar 

  • Roberts MC (2008) E85 and fuel efficiency: an empirical analysis of 2007 EPA test data. Energ Policy 36:1233–1235

    Google Scholar 

  • Rodríguez J, Lema JM, Kleerebezem R (2008) Energy-based models for environmental biotechnology. Trends Biotechnol 26:366–374

    Google Scholar 

  • Ros J, Nagelhout D, Montfoort J (2009) New environmental policy for system innovation: Casus alternatives for fossil motor fuels. Appl Energ 86:243–250

    Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Glassley W, Albarede F (2006) The rise of continents – an essay on the geologic consequences of photosynthesis. Palaeogeogr Palaeocl 232:99–113

    Google Scholar 

  • Rotman D (2008) The price of biofuels. Technol Rev January/February:42–51

    Google Scholar 

  • Rowlands WN, Masters A, Maschmeyer T (2008) The biorefinery – challenges, opportunities, and an Australian perspective. B Sci Technol Soc 28:149–158

    Google Scholar 

  • Royal Society (2008) Sustainable biofuels: prospects and challenges. http://royalsociety.org

    Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Google Scholar 

  • Runge CF, Senauer B (2007) How biofuels could starve the poor. Foreign Affairs May/June

    Google Scholar 

  • Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O (2006) Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol 72:442–449

    Google Scholar 

  • Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42:3170–3176

    Google Scholar 

  • Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Google Scholar 

  • Sanderson K (2008) Flights of green fancy. Nature 453:264–265

    Google Scholar 

  • Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenerg 32:422–430

    Google Scholar 

  • Sathaye J, Andrasko K (2007) Special issue on estimation of baselines and leakage in carbon mitigation forestry projects. Mitigation Adaptation Strategies Global Change 12:963–970

    Google Scholar 

  • Saunders HD (2008) Virtual biofuels – a cheaper, better, faster alternative? Energ Policy 36:1247–1250

    Google Scholar 

  • Savage DF, Way J, Silver PA (2008) Defossiling fuel: how synthetic biology can transform biofuel production. ACS Chem Biol 3(1):13–16

    Google Scholar 

  • Sawayama S, Minowa T, Yokoyama S (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenerg 17:33–39

    Google Scholar 

  • Scholz V, da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg 32:95–100

    Google Scholar 

  • Schröder P, Herzig R, Bojinov A, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J (2008) Bioenergy to save the world. Producing novel energy plants for growth of abandoned land. Environ Sci Pollut Res Int 15:196–204

    Google Scholar 

  • Scott A, Bryner M (2006) Alternative fuels: rolling out next-generation technologies. Chem Week 168:17–21

    Google Scholar 

  • Scott E, Peter F, Sanders J (2007) Biomass in the manufacture of industrial products – the use of proteins and amino acids. Appl Microbiol Biotechnol 75:751–762

    Google Scholar 

  • Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular reactor. Biomass Bioenerg 23:67–73

    Google Scholar 

  • Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156:497–511

    Google Scholar 

  • Shao H, Chu L (2008) Resource evaluation of typical energy plants and possible functional zone planning in China. Biomass Bioenerg 32:283–288

    Google Scholar 

  • Shu Q, Yang B, Yuan H, Qing S, Zhu G (2007) Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal Commun 8:2159–2165

    Google Scholar 

  • Silver WL, Ostertag R, Lugo AE (2000) The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor Ecol 8:394–407

    Google Scholar 

  • Simonetti DA, Kunkes EL, Dumesic JA (2007) Gas-phase conversion of glycerol to synthesis gas over carbon-supported platinum and platinum–rhenium catalysts. J Catal 247:298–306

    Google Scholar 

  • Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Change Biol 12:2054–2076

    Google Scholar 

  • Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265

    Google Scholar 

  • Smeets E, Junginger M, Faaij A, Walter A, Dolzan P, Turkenburg W (2008) The sustainability of Brazilian ethanol – an assessment of the possibilities of certified production. Biomass Bioenerg 32:781–813

    Google Scholar 

  • Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenerg 31:416–425

    Google Scholar 

  • Song C, Zhou Y, Huang R, Wang Y, Huang Q, Lu G, Liu K (2007) Influence of ethanol-diesel blended fuels on diesel exhaust emissions and mutagenic and genotoxic activities of particulate extracts. J Hazard Mater 149:355–363

    Google Scholar 

  • Sørensen A, Teller PJ, Hilstrøm T, Ahring BK (2008) Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment. Bioresour Technol 99:6602–6607

    Google Scholar 

  • Stams AJM, de Bok FAM, Plugge CM, van Eekert MHA, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8:371–382

    Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Google Scholar 

  • Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energ Fuels 22:814–839

    Google Scholar 

  • Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26:424–435

    Google Scholar 

  • Szklo A, Schaeffer R, Delgado F (2007) Can one say ethanol is a real threat to gasoline? Energ Policy 35:5411–5421

    Google Scholar 

  • Takeshita T, Yamaji K (2008) Important roles of Fischer-Tropsch synfuels in the global energy future. Energ Policy 36:2773–2784

    Google Scholar 

  • Tamunaidu P, Bhatia S (2007) Catalytic cracking of palm oil for the production of biofuels: optimization studies. Bioresour Technol 98:3593–3601

    Google Scholar 

  • Tang H, Salley SO, Ng KYS (2008) Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel 87:3006–3017

    Google Scholar 

  • Taylor LE II, Dai Z, Decker SR, Brunecky R, Adney WS, Ding S, Himmel ME (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26:413–424

    Google Scholar 

  • Themelis NJ, Ulloa PA (2007) Methane generation in landfills. Renew Energ 32:1243–1257

    Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    Google Scholar 

  • Tollefson J (2008) Energy: not your father’s biofuels. Nature 451:880–883

    Google Scholar 

  • Troell M, Robertson-Andersson D, Anderson RJ, Bolton JJ, Maneveldt G, Halling C, Probyn T (2006) Abalone farming in South Africa: an overview with perspectives on kelp resources, abalone feed, potential for on-farm seaweed production and socio-economic importance. Aquaculture 257:266–281

    Google Scholar 

  • Tsuchida T, Yoshioka T, Sakuma S, Takeguchi T, Ueda W (2008) Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Ind Eng Chem Res 47:1443–1452

    Google Scholar 

  • Tsutsui WM (2003) Landscapes in the dark valley: toward an environmental history of wartime Japan. Environ Hist 8:294–311

    Google Scholar 

  • Turner P, Mamo G, Nordberg Karlsson E (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9

    Google Scholar 

  • Tyner WE (2007) Policy alternatives for the future biofuels industry. J Agric Food Ind Organ 5(2):2. http://www.bepress.com/jafio/vol5/iss2/art2/

    Google Scholar 

  • Tyner WE (2008) The US ethanol and biofuels boom: its origins, current status, and future prospects. BioScience 58:646–653

    Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Google Scholar 

  • Valliyappan T, Bakhshi NN, Dalai AK (2008) Pyrolysis of glycerol for the production of hydrogen or syn gas. Bioresour Technol 99:4476–4483

    Google Scholar 

  • van Dam J, Junginger M, Faaij A, Jürgens I, Best G, Fritsche U (2008) Overview of recent developments in sustainable biomass certification. Biomass Bioenerg 32:749–780

    Google Scholar 

  • Van Ginkel SW, Oh S, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrogen Energ 30:1535–1542

    Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production – current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Google Scholar 

  • Von Braun J (2008) Food prices, biofuels and climate change. International Food Policy Research Institute, Washington DC

    Google Scholar 

  • Wackett LP (2008) Biomass to fuels via microbial transformations. Curr Opin Chem Biol 12:187–193

    Google Scholar 

  • Wang J, Shuai S, Chen H (2007) Application and development of biomass fuels for transportation in China. Tsinghua Sci Technol 12:223–230

    Google Scholar 

  • Wang C, Pan J, Li J, Yang Z (2008) Comparative studies of products produced from four different biomass samples via deoxy-liquefaction. Bioresour Technol 99:2778–2786

    Google Scholar 

  • Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M, Shi Y, Lenz M, Wu X, Zhao R (2008a) Grain sorghum is a viable feedstock for ethanol production. J Ind Microbiol Biotechnol 35:313–330

    Google Scholar 

  • Wang L, Weller CL, Jones DD, Hanna MA (2008b) Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenerg 32:573–581

    Google Scholar 

  • Wang H, Brown SL, Magesan GN, Slade AH, Quintern M, Clinton PW, Payn TW (2008c) Technological options for the management of biosolids. Environ Sci Pollut Res 15:308–317

    Google Scholar 

  • Wardle DA (2003) Global sale of green air travel supported using biodiesel. Renew Sust Energ Rev 7:1–64

    Google Scholar 

  • Wardle DA, Nilsson M, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    Google Scholar 

  • Warnick TA, Methé BA, Leschine SB (2002) Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160

    Google Scholar 

  • Weng J, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172

    Google Scholar 

  • Westermann P, Jørgensen B, Lange L, Ahring BK, Christensen CH (2007) Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery. Int J Hydrogen Energ 32:4135–4141

    Google Scholar 

  • Westhoff P (2008) Farm commodity prices: why the boom and what happens now? Choices 23(2):6–10

    Google Scholar 

  • Wheals AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487

    Google Scholar 

  • Wiesenthal T, Leduc G, Christidis P, Schade B, Pelkmans L, Govaerts L, Georgopoulos P (2008) Biofuel support policies in Europe: lessons learnt for the long way ahead. Renew Sust Energ Rev in press

    Google Scholar 

  • Wijffels RR (2008) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26:26–31

    Google Scholar 

  • Wikfors GH, Ohno M (2001) Impact of algal research in aquaculture. J Phycol 37:968–974

    Google Scholar 

  • Wilcox HA (1982) The ocean as a supplier of food and energy. Experientia 38:31–35

    Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. BioScience 49:781–788

    Google Scholar 

  • Willke T, Vorlop K (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    Google Scholar 

  • Winebrake JJ, Corbett JJ, Meyer PE (2007) Energy use and emissions from marine vessels: a total fuel life cycle approach. J Air Waste Manag Assoc 57:102–110

    Google Scholar 

  • Wongtanet J, Sang B, Lee S, Pak D (2007) Biohydrogen production by fermentative process in continuous stirred-tank reactor. Int J Green Energy 4:385–395

    Google Scholar 

  • Würster R, Zittel W (2007) Hydrogen infrastructure build-up for automotive applications. Mitigation Adaptation Strategies Global Change 12:367–386

    Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Google Scholar 

  • Yang YF, Feng CP, Inamori Y, Maekawa T (2004) Analysis of energy conversion characteristics in liquefaction of algae. Resour Conserv Recy 43:21–33

    Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    Google Scholar 

  • You Y, Shie J, Chang C, Huang S, Pai C, Yu Y, Chang CH (2008) Economic cost analysis of biodiesel production: case in soybean oil. Energy Fuels 22:182–189

    Google Scholar 

  • Yumrutaş R, Alma MH, Özcan H, Kaşka Ö (2008) Investigation of purified sulphate turpentine on engine performance and exhaust emission. Fuel 87:252–259

    Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Google Scholar 

  • Zanichelli D, Carloni F, Hasanaji E, D’Andrea N, Filippini A, Setti L (2007) Production of ethanol by an integrated valorization of olive oil byproducts: the role of phenolic inhibition. Environ Sci Pollut Res Int 14:5–6

    Google Scholar 

  • Zhou X, Xiao B, Ochieng RM, Yang J (2008) Utilization of carbon-negative biofuels from low-input high-diversity grassland biomass for energy in China. Renew Sust Energ Rev in press

    Google Scholar 

  • Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Transport Biofuels: Their Characteristics, Production and Costs. In: Biofuels for Road Transport. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84882-138-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-138-5_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-137-8

  • Online ISBN: 978-1-84882-138-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics