Advertisement

Training, Credentialing, and Hospital Privileging for Robotic Urological Surgery

  • Kevin C. ZornEmail author
  • Gagan Gautam
Chapter

Abstract

Robotic surgery has undergone an evolution at an incredible rate in the last decade with robotic-assisted radical prostatectomy (RARP) now being the most commonly performed robotic procedure. More impressively, as a urologic community, we have witnessed a paradigm shift in that the robotic approach has now become the standard approach for radical prostatectomy in the majority of hospital centers. Although guidelines for the safe initiation of this technology are an overwhelming necessity, unfortunately no standardized credentialing system currently exists to assess competency and safety of the robotic surgeon.

Keywords

Robotic Surgery Positive Surgical Margin Intuitive Surgical Virtual Reality Simulator Robotic Surgeon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Budäus L, Sun M, Abdollah F, Zorn KC, Morgan M, Johal R, Liberman D, Thuret R, Isbarn H, Salomon G, Haese A, Montorsi F, Shariat SF, Perrotte P, Graefen M, Karakiewicz PI. Impact of Surgical Experience on In-Hospital Complication Rates in Patients Undergoing Minimally Invasive Prostatectomy: A Population-Based Study. Ann Surg Oncol. 2010; in press [DOI: 10.1245/s10434-010-1300-0].Google Scholar
  2. 2.
    Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87:408–410.PubMedCrossRefGoogle Scholar
  3. 3.
    Pasticier G, Rietbergen JB, Guillonneau B, Fromont G, Menon M, Vallancien G. Robotically assisted laparoscopic radical prostatectomy: feasibility study in men. Eur Urol. 2001;40:70–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Menon M, Tewari A, Peabody J. Vattikuti Institute prostatectomy: technique. J Urol. 2003;169:2289–2292.PubMedCrossRefGoogle Scholar
  5. 5.
    Intuitive Surgical web site. http://www.intuitivesurgical.com. Accessed August 15, 2009.
  6. 6.
    Steinberg PL, Merguerian PA, Bihrle W III, Seigne JD. The cost of learning robotic-assisted prostatectomy. Urology. 2008;72:1068–1072.PubMedCrossRefGoogle Scholar
  7. 7.
    Badani KK, Kaul S, Menon M. Evolution of robotic radical prostatectomy: assessment after 2766 procedures. Cancer. 2007;110:1951–1958.PubMedCrossRefGoogle Scholar
  8. 8.
    Hermann TR, Rabenalt R, Stolzenburg JJ, Liatsikos EN, Imkamp F, Tezval H, et al. Oncological and functional results of open, robot-assisted and laparoscopic radical prostatectomy: does surgical approach and surgical experience matter? World J Urol. 2007;25:149–160.CrossRefGoogle Scholar
  9. 9.
    Boris RS, Kaul SA, Sarle RC, Stricker HJ. Radical prostatectomy: a single surgeon comparison of retropubic, perineal, and robotic approaches. Can J Urol. 2007;14:3566–3570.PubMedGoogle Scholar
  10. 10.
    Patel VR, Thaly R, Shah K. Robotic radical prostatectomy: outcomes of 500 cases. BJU Int. 2007;99: 1109–1112.PubMedCrossRefGoogle Scholar
  11. 11.
    Atug F, Castle EP, Srivastav SK, Burgess SV, Thomas R, Davis R. Positive margins in robotic-assisted radical prostatectomy: impact of learning curve on oncologic outcomes. Eur Urol. 2006;49:866–871.PubMedCrossRefGoogle Scholar
  12. 12.
    Ahlering TE, Eichel L, Edwards RA, Lee DI, Skarecky DW. Robotic radical prostatectomy: a technique to reduce pt2 positive margins. Urology. 2004;64:1224–1228.PubMedCrossRefGoogle Scholar
  13. 13.
    Zorn KC, Orvieto MA, Gong EM, Mikhail AA, Gofrit ON, Zagaja GP, et al. Robotic radical prostatectomy learning curve of a fellowship – trained laparoscopic surgeon. J Endourol. 2007;21:441–447.PubMedCrossRefGoogle Scholar
  14. 14.
    Vickers AJ, Bianco FJ, Serio AM, et al. The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst. 2007;99:1171–1177.PubMedCrossRefGoogle Scholar
  15. 15.
    Vickers AJ, Bianco FJ, Gonen M, et al. Excellent rates of cancer control for patients with organ-confined disease treated by the most experienced surgeons suggest that the primary reason such patients recur is inadequate surgical technique. Eur Urol. 2008;53:960–966.PubMedCrossRefGoogle Scholar
  16. 16.
    Zorn KC, Wille MA, Thong AE, et al. Continued improvement of perioperative, pathological and continence outcomes during 700 robot assisted radical prostatectomies. Can J Urol. 2009;16:4742–4749.PubMedGoogle Scholar
  17. 17.
    Wilt TJ, Shamliyan TA, Taylor BC, MacDonald R, Kane RL. Association between hospital and surgeon radical prostatectomy volume and patient outcomes: a systematic review. J Urol. 2008;180:820–829.PubMedCrossRefGoogle Scholar
  18. 18.
    Nuttall M, Van der Meulen J, Phillips N, Sharpin C, Gillatt D, McIntosh G, et al. A systematic review and critique of the literature relating hospital or surgeon volume to health outcomes for 3 urological cancer procedures. J Urol. 2004;172:2145–2152.PubMedCrossRefGoogle Scholar
  19. 19.
    Duchene DA, Moinzadeh A, Gill IS, Clayman RV, Winfield HN. Survey of residency training in laparoscopic and robotic surgery. J Urol. 2006;176:2158–2166.PubMedCrossRefGoogle Scholar
  20. 20.
    Rashid HH, Leung YY, Rashid MJ, Oleyourryk G, Valvo JR, Eichel L. Robotic surgical education: a systematic approach to training urology residents to perform robotic-assisted laparoscopic radical prostatectomy. Urology. 2006;68:75–79.PubMedCrossRefGoogle Scholar
  21. 21.
    Schroeck FR, de Sousa CA, Kalman RA, Kalia MS, Pierre SA, Halebilan GE, Sun L, Moul JW, Albala DM. Trainees do not negatively impact the institutional learning curve for robotic prostatectomy as characterized by operative time, estimated blood loss and positive surgical margin rate. Urology. 2008;71:597–601.PubMedCrossRefGoogle Scholar
  22. 22.
    Yap SA, Ellison LM, Low RK. Current laparoscopy training in urology: a comparison of fellowships governed by the society of urologic oncology and the endourological society. J Endourol. 2008;22:1755–1760.PubMedCrossRefGoogle Scholar
  23. 23.
    Gautam G. The current three-year postgraduate program in urology is insufficient to train a urologist. Indian J Urol. 2008;24:336–338.PubMedCrossRefGoogle Scholar
  24. 24.
    Guzzo TJ, Gonzalgo ML. Robotic surgical training of the urologic oncologist. Urol Oncol. 2009;27:214–217.PubMedGoogle Scholar
  25. 25.
    Schroeck FR, de Sousa CA, Kalman RA, Kalia MS, Pierre SA, Haleblian GE, et al. Trainees do not negatively impact the institutional learning curve for robotic prostatectomy as characterized by operative time, estimated blood loss, and positive surgical margin rate. Urology. 2008;71:597–601.PubMedCrossRefGoogle Scholar
  26. 26.
    McDougall EM, Corica FA, Chou DS, Abdelshehid CS, Uribe CA, Stoliar G, et al. Short-term impact of a robot-assisted laparoscopic prostatectomy ‘mini-residency’ experience on postgraduate urologists’ practice patterns. Int J Med Robotics Comput Assist Surg. 2006;2:70–74.CrossRefGoogle Scholar
  27. 27.
    Gamboa AJ, Santos RT, Sargent ER, Louie MK, Box GN, Sohn KH, et al. Long-term impact of a robot assisted laparoscopic prostatectomy mini fellowship training program on postgraduate urological practice patterns. J Urol. 2009;181:778–782.PubMedCrossRefGoogle Scholar
  28. 28.
    Wignall GR, Denstedt JD, Preminger GM, Cadeddu JA, Pearle MS, Sweet RM, et al. Surgical simulation: a urological perspective. J Urol. 1699;2008(179):1690–1699.CrossRefGoogle Scholar
  29. 29.
    Satava RM. Accomplishments and challenges of surgical simulation. Surg Endosc. 2001;15:232–241.PubMedCrossRefGoogle Scholar
  30. 30.
    Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. The effect of bench model fidelity on endourological skills: a randomized controlled study. J Urol. 2002;167:1243–1247.PubMedCrossRefGoogle Scholar
  31. 31.
    Grober ED, Hamstra SJ, Wanzel KR, Reznick RK, Matsumoto ED, Sidhu RS, et al. The educational impact of bench model fidelity on the acquisition of technical skill: the use of clinically relevant outcome measures. Ann Surg. 2004;240:374–381.PubMedCrossRefGoogle Scholar
  32. 32.
    Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dv-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73:1288–1292.PubMedCrossRefGoogle Scholar
  33. 33.
    Sachdeva AK, Russell TR. Safe introduction of new procedures and emerging technologies in surgery: education, credentialing and privileging. Surg Clin N Am. 2007;87:853–866.PubMedCrossRefGoogle Scholar
  34. 34.
    Sachdeva AK. Acquiring skills in new procedures and technology: the challenge and the opportunity. Arch Surg. 2005;140:387–389.PubMedCrossRefGoogle Scholar
  35. 35.
    Livingston EH, Harwell JD. The medicolegal aspects of proctoring. Am J Surg. 2002;184:26–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Sachdeva AK, Blair PG. Enhancing patient safety through educational interventions. In: Manuel BM, Nora PF, eds. Surgical Patient Safety: Essential Information for Surgeons in Today’s Environment. Chicago, IL: American College of Surgeons; 2004:Chapt 14.Google Scholar
  37. 37.
    Ellison LM, Pinto PA, Kim F, Ong AM, Patriciu A, Stoianovici D, et al. Telerounding and patient satisfaction after surgery. J Am Coll Surg. 2004;199:523–530.PubMedCrossRefGoogle Scholar
  38. 38.
    Ellison LM, Nguyen M, Fabrizio MD, Soh A, Permpongkosol S, Kavoussi LR. Postoperative robotic telerounding: a multicenter randomized assessment of patient outcomes and satisfaction. Arch Surg. 2007;142:1177–1181.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith CD, Skandalakis JE. Remote presence proctoring by using a wireless remote-control videoconferencing system. Surg Innov. 2005;12:139–143.PubMedCrossRefGoogle Scholar
  40. 40.
    Burgess LPA, Syms MJ, Holtel MR, Birkmire-Peters DP, Johnson RE, Ramsey MJ. Telemedicine: teleproctored endoscopic sinus surgery. Laryngoscope. 2002;112:216–219.PubMedCrossRefGoogle Scholar
  41. 41.
    Zorn KC, Gautam G, Shalhav AL, Clayman RV, Ahlering TE, Albala DM, et al. and The Society of Urologic Robotic Surgeons. Training, credentialing, proctoring and medicolegal risks of robotic urological surgery: recommendations of the society of urologic robotic surgeons. J Urol. 2009;182:1126–1132.PubMedCrossRefGoogle Scholar
  42. 42.
    Sachdeva AK. Invited commentary: educational interventions to address the core competencies in surgery. Surgery. 2004;135:43–47.PubMedCrossRefGoogle Scholar
  43. 43.
    Sachdeva AK. Acquisition and maintenance of surgical competence. Semin Vasc Surg. 2002;15:182–190.PubMedCrossRefGoogle Scholar
  44. 44.
    Verification by the American College of Surgeons for the use of emerging technologies. Bull Am Coll Surg. 1998;83:34–40.Google Scholar
  45. 45.
    Statements on emerging surgical technologies and the evaluation of credentials. American college of surgeons. Surg Endosc. 1995;9:207–213.Google Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  1. 1.Department of Urology, Division of Robotic SurgeryUniversity of Montreal Medical CenterMontrealCanada
  2. 2.Section of Urology, Department of SurgeryUniversity of Chicago Medical CenterChicagoUSA

Personalised recommendations