Advertisement

Animal Laboratory Training: Current Status and How Essential Is It?

  • Gyung Tak SungEmail author
  • Yinghao Sun
Chapter

Abstract

For the successful transition of new technology into clinical practice, surgeons must continue to train concurrently with newly introduced technology for the benefit of both surgeons and future patients. Various training methods have been proposed to assimilate robotic-assisted technology for clinical applications.

Keywords

Robotic Surgery Porcine Model Surgical Skill Surgical Training Robotic Assistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Ms. Seh-Rin Sung for her assistance in the preparation of this manuscript.

References

  1. 1.
    Hance J, Aggarwal R, Undre S, et al. Skills training in telerobotic surgery. Int J Med Robotics Comput Assist Surg. 2005;1(2):7–12.CrossRefGoogle Scholar
  2. 2.
    Keeley FX, Eden CG, Tolley DA, et al. The British Association of Urological Surgeons: guidelines for training in laparoscopy. BJU Int. 2007;100(2):379–381.PubMedCrossRefGoogle Scholar
  3. 3.
    Chitwood WR, Nifong LW, Elbeery JE, et al. Robotic mitral valve repair: trapezoidal resection and prosthetic annuloplasty with the da Vinci surgical system. J Thorac Cardiovasc Surg. 2000;120(6):1171–1172.PubMedCrossRefGoogle Scholar
  4. 4.
    Thiel DD, Winfield HN. Robotics in urology: past, present and future. J Endourol. 2008;22(4):825–830.PubMedCrossRefGoogle Scholar
  5. 5.
    McDougall EM, Corica FA, Chou DS, et al. Short-term impact of a robot-assisted laparoscopic prostatectomy ‘mini-residency’ experience on postgraduate urologists’ practice patterns. Int J Med Robotics Comput Assist Surg. 2006;2:70–74.CrossRefGoogle Scholar
  6. 6.
    Rashid HH, Leung YM, Rashid MJ, et al. Robotic surgical education: a systematic approach to training urology residents to perform robotic-assisted laparoscopic radical prostatectomy. Urology. 2006;68:75–79.PubMedCrossRefGoogle Scholar
  7. 7.
    Cosman P, Hemli JM, Ellis AM, et al. Learning the surgical craft: a review of skills training options. ANZ J Surg. 2007;77:838–845.PubMedCrossRefGoogle Scholar
  8. 8.
    van Velthoven RF, Hoffmann P. Methods for laparoscopic training using animal models. Curr Urol Rep. 2006;7(2):114–119.PubMedCrossRefGoogle Scholar
  9. 9.
    Hammoud MM, Nuthalapaty FS, Goepfert AR, et al. To the point: medical education review of the role of simulators in surgical training. Am J Obst Gynec. 2008;199(34): 338–343.CrossRefGoogle Scholar
  10. 10.
    Vlaovic PD, Sargent ER, Boker JR, et al. Immediate impact of an intensive one-week laparoscopy training program on laparoscopic skills among postgraduate urologists. JSLS. 2008;12:1–8.PubMedGoogle Scholar
  11. 11.
    Belsley SJ, Byer A, Ballantyne GH, et al. 1st International Congress of the Minimally Invasive Robotic Association (MIRA), 7–10 December 2006, Innsbruck, Austria. Congress summary: MIRA and the future of surgical robotics. Int J Med Robotics Comput Assist Surg. 2006;2:98–103.CrossRefGoogle Scholar
  12. 12.
    Pierorazio PM, Allaf ME. Minimally invasive surgical training: challenges and solutions. Urol Oncol. 2009;27(2):208–213.PubMedGoogle Scholar
  13. 13.
    Roberts KE, Bell RL, Duffy AJ. Evolution of surgical skills training. World J Gastroenterol. May 28, 2006;12(20):3219–3224.PubMedGoogle Scholar
  14. 14.
    Hanly EJ, Talamini MA. Robotic abdominal surgery. Am J Surg. 2004;188:19S–26S.PubMedCrossRefGoogle Scholar
  15. 15.
    Mehrabi A, Yetimoglu CL, Nickkholgh A, et al. Development and evaluation of a training module for the clinical introduction of the da Vinci robotic system in visceral and vascular surgery. Surg Endosc. 2006;20:1376–1382.PubMedCrossRefGoogle Scholar
  16. 16.
    Hanly EJ, Marohn MR, Bachman SL, et al. Multiservice laparoscopic surgical training using the da Vinci surgical system. Amer J Surg. 2004;187:309–315.PubMedCrossRefGoogle Scholar
  17. 17.
    Cundiff GW, Weidner AC, Visco AG. Effectiveness of laparoscopic cadaveric dissection in enhancing resident comprehension of pelvic anatomy. J Am Coll Surg. 2001;291:492–495.CrossRefGoogle Scholar
  18. 18.
    Lecuru F, Robin F, Taurelle R. Laparoscopic pelvic lymphadenectomy in an anatomical model: results of an experimental comparative trail. J Obstet Gynecol Reprod Biol. 1997;72:51–54.CrossRefGoogle Scholar
  19. 19.
    Kunkler K. The role of medical simulation: an overview. Int J Med Robot. 2006;2:203–210.PubMedGoogle Scholar
  20. 20.
    Chitwood WR, Nifong LW, Chapman WH, et al. Robotic surgical training in an academic institution. Ann Surg. 2001;234(4):475–486.PubMedCrossRefGoogle Scholar
  21. 21.
    Sung GT, Gill IS, Hsu TH. Robotic-assisted laparoscopic pyeloplasty: a pilot study. Urology. 1999;53(6):1099–1103.PubMedCrossRefGoogle Scholar
  22. 22.
    Gill IS, Sung GT. Hsu et al. Robotic remote laparoscopic nephrectomy and adrenalectomy: the initial experience. J Urol. 2000;164(6):2082–2085.PubMedCrossRefGoogle Scholar
  23. 23.
    Sung GT, Gill IS. Remote, robotic laparoscopic extravesical ureteral reimplantation with ureteral advancement technique. Dialogues Pediatr Urol. 2001;24:10.Google Scholar
  24. 24.
    Sung GT, Gill IS. Robotic laparoscopic surgery: a comparison of the da Vinci and ZEUS systems. Urology. 2001;58(6):893–898.PubMedCrossRefGoogle Scholar
  25. 25.
    Hubert J, Feuillu B, Mangin P, et al. Laparoscopic computer-assisted pyeloplasty: the results of experimental surgery in pigs. BJU Inter. 2003;92:437–440.CrossRefGoogle Scholar
  26. 26.
    Passerotti CC, Passerotti AM, Dall’Oglio MF, et al. Comparing the quality of the suture anastomosis and the learning curves associated with performing open, freehand, and robotic-assisted laparoscopic pyeloplasty in a swine animal model. J Am Coll Surg. 2009;208: 576–586.PubMedCrossRefGoogle Scholar
  27. 27.
    Passerotti CC, Nguyen HT, Lais A, et al. Robot-assisted laparoscopic ileal bladder augmentation: defining techniques and potential pitfalls. J Endourol. 2008;22(2): 355–360.PubMedCrossRefGoogle Scholar
  28. 28.
    Ponsky LE, Cherullo EE, Banks KL, et al. Laparoscopic transuterine fetal vesicostomy: a feasibility study. J Urol. 2004;172:2391–2394.PubMedCrossRefGoogle Scholar
  29. 29.
    Passerotti CC, Barnewolt C, Xuewu J, et al. In utero treatment for bladder outlet obstruction using robot assisted laparoscopic techniques. J Urol. 2008;180:1790–1794.PubMedCrossRefGoogle Scholar
  30. 30.
    Schiff J, Li PS, Goldstein M. Robotic microsurgical vasovasostomy and vasoepididymostomy: a prospective randomized study in a rat model. J Urol. 2004;171:1720–1725.PubMedCrossRefGoogle Scholar
  31. 31.
    Gill IS, Ukimura O, Rubinstein M, et al. Lateral pedicle control during laparoscopic radical prostatectomy: refined technique. Urology. 2005;65(1):23–27.PubMedCrossRefGoogle Scholar
  32. 32.
    Gianduzzo T, Colombo JR Jr, Haber GP, et al. Laser robotically assisted nerve-sparing radical prostatectomy: a pilot study of technical feasibility in the canine model. BJU Inter. 2008;102:598–602.CrossRefGoogle Scholar
  33. 33.
    Haber GP, Crouzet S, Kamoi C, et al. Robotic NOTES (natural orifice translumenal endoscopic surgery) in reconstructive urology: initial laboratory experience. Urology. 2008;71:996–1000.PubMedCrossRefGoogle Scholar
  34. 34.
    Hanly EJ, Miller BE, Kumar R, et al. Mentoring console improves collaboration and teaching in surgical robotics. J Laparoendosc Adv Surg Tech A. 2006;16(5):445–451.PubMedCrossRefGoogle Scholar
  35. 35.
    Sterbis JR, Janly EJ, Herman BC, et al. Transcontinental telesurgical nephrectomy using the da Vinci robot in a porcine model. Urology. 2008;71:971–973.PubMedCrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  1. 1.Department of UrologyDong-A University HospitalBusanSouth Korea
  2. 2.Department of UrologyChanghai Hospital, Second Military Medical UniversityShanghaiChina

Personalised recommendations