Pathophysiology of Renal Obstruction

  • Glenn M. Cannon
  • Richard S. Lee
Part of the Springer Specialist Surgery Series book series (SPECIALIST)


Renal obstruction can be caused by intrinsic or extrinsic factors that affect the ureters, bladder, or urethra. Most of the literature concerning the pathophysiology of renal obstruction has focused on unilateral ureteral obstruction (UUO) or bilateral ureteral obstruction (BUO). Table 15.1 lists possible causes of renal obstruction.


Unilateral Ureteral Obstruction Renal Vascular Resistance Urinary Tract Obstruction Differential Renal Function Magnetic Resonance Urography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dhillon HK. Prenatally diagnosed hydronephrosis: the Great Ormond Street experience. Br J Urol. 1998;81 (suppl 2):39-44PubMedGoogle Scholar
  2. 2.
    Chung S et al. Diuretic renography in the evaluation of neonatal hydronephrosis: is it reliable? J Urol. 1993;150(2 pt 2):765-768PubMedGoogle Scholar
  3. 3.
    Hafez AT et al. Analysis of trends on serial ultrasound for high grade neonatal hydronephrosis. J Urol. 2002; 168(4 pt 1):1518-1521PubMedGoogle Scholar
  4. 4.
    Lee RS et al. Antenatal hydronephrosis as a predictor of postnatal outcome: a meta-analysis. Pediatrics. 2006; 118(2):586-593PubMedCrossRefGoogle Scholar
  5. 5.
    Huang WY et al. Renal biopsy in congenital ureteropelvic junction obstruction: evidence for parenchymal maldevelopment. Kidney Int. 2006;69(1):137-143PubMedCrossRefGoogle Scholar
  6. 6.
    Elder JS et al. Renal histological changes secondary to ureteropelvic junction obstruction. J Urol. 1995;154(2 pt 2): 719-722PubMedGoogle Scholar
  7. 7.
    Rosen S et al. The kidney in congenital ureteropelvic junction obstruction: a spectrum from normal to nephrectomy. J Urol. 2008;179(4):1257-1263PubMedCrossRefGoogle Scholar
  8. 8.
    Airik R, Kispert A. Down the tube of obstructive nephropathies: the importance of tissue interactions during ureter development. Kidney Int. 2007;72(12):1459-1467PubMedCrossRefGoogle Scholar
  9. 9.
    Airik R et al. Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest. 2006;116(3):663-674PubMedCrossRefGoogle Scholar
  10. 10.
    Brenner-Anantharam A et al. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development. 2007;134(10):1967-1975PubMedCrossRefGoogle Scholar
  11. 11.
    Miyazaki Y et al. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest. 2000;105(7):863-873PubMedCrossRefGoogle Scholar
  12. 12.
    Miyazaki Y et al. Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int. 2003; 63(3):835-844PubMedCrossRefGoogle Scholar
  13. 13.
    Chevalier RL. Perinatal obstructive nephropathy. Semin Perinatol. 2004;28(2):124-131PubMedCrossRefGoogle Scholar
  14. 14.
    Oshima K et al. Angiotensin type II receptor expression and ureteral budding. J Urol. 2001;166(5):1848-1852PubMedCrossRefGoogle Scholar
  15. 15.
    Dunn NR et al. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol. 1997;188(2):235-247PubMedCrossRefGoogle Scholar
  16. 16.
    Hinman F. Renal counterbalance. Cal West Med. 1926;24(3):333-335PubMedGoogle Scholar
  17. 17.
    Taki M, Goldsmith DI, Spitzer A. Impact of age on effects of ureteral obstruction on renal function. Kidney Int. 1983;24(5):602-609PubMedCrossRefGoogle Scholar
  18. 18.
    Chevalier RL et al. Unilateral ureteral obstruction in early development alters renal growth: dependence on the duration of obstruction. J Urol. 1999;161(1):309-313PubMedCrossRefGoogle Scholar
  19. 19.
    Mandell J et al. Human fetal compensatory renal growth. J Urol. 1993;150(2 pt 2):790-792PubMedGoogle Scholar
  20. 20.
    Koff SA et al. The assessment of obstruction in the newborn with unilateral hydronephrosis by measuring the size of the opposite kidney. J Urol. 1994;152(2 pt 2): 596-599PubMedGoogle Scholar
  21. 21.
    Gruskin AB, Edelmann CM Jr, Yuan S. Maturational changes in renal blood flow in piglets. Pediatr Res. 1970; 4(1):7-13PubMedCrossRefGoogle Scholar
  22. 22.
    Chevalier RL, Gomez RA. Response of the renin-angiotensin system to relief of neonatal ureteral obstruction. Am J Physiol. 1988;255(6 pt 2):F1070-7PubMedGoogle Scholar
  23. 23.
    Chevalier RL, Thornhill BA. Ureteral obstruction in the neonatal rat: renal nerves modulate hemodynamic effects. Pediatr Nephrol. 1995;9(4):447-450PubMedCrossRefGoogle Scholar
  24. 24.
    Chevalier RL, Kaiser DL. Chronic partial ureteral obstruction in the neonatal guinea pig I. Influence of uninephrectomy on growth and hemodynamics. Pediatr Res. 1984;18(12):1266-1271PubMedCrossRefGoogle Scholar
  25. 25.
    Chevalier RL, Thornhill BA, Gomez RA. EDRF modulates renal hemodynamics during unilateral ureteral obstruction in the rat. Kidney Int. 1992;42(2): 400-406PubMedCrossRefGoogle Scholar
  26. 26.
    Greger R. Physiology of renal sodium transport. Am J Med Sci. 2000;319(1):51-62PubMedCrossRefGoogle Scholar
  27. 27.
    Alexander RT, Grinstein S. Na+/H + exchangers and the regulation of volume. Acta Physiol (Oxf). 2006;187(1–2):159-167CrossRefGoogle Scholar
  28. 28.
    Wen JG et al. Obstructive nephropathy: an update of the experimental research. Urol Res. 1999;27(1):29-39PubMedCrossRefGoogle Scholar
  29. 29.
    Stecker JF Jr, Gillenwater JY. Experimental partial ureteral obstruction. I. Alteration in renal function. Invest Urol. 1971;8(4):377-385PubMedGoogle Scholar
  30. 30.
    Wilson DR. Micropuncture study of chronic obstructive nephropathy before and after release of obstruction. Kidney Int. 1972;2(3):119-130PubMedCrossRefGoogle Scholar
  31. 31.
    Tanagho EA. Surgically induced partial urinary obstruction in the fetal lamb. 3. Ureteral obstruction. Invest Urol. 1972;10(1):35-52PubMedGoogle Scholar
  32. 32.
    Olsen L. Renal function in experimental chronic hydronephrosis. III. Glomerular and tubular functions in relation to renal pelvic volume. Scand J Urol Nephrol. 1976;(suppl 32):5-13PubMedGoogle Scholar
  33. 33.
    Josephson S. Experimental obstructive hydronephrosis in newborn rats III. Long-term effects on renal function. J Urol. 1983;129(2):396-400PubMedGoogle Scholar
  34. 34.
    Boron WF. Acid-base transport by the renal proximal tubule. J Am Soc Nephrol. 2006;17(9):2368-2382PubMedCrossRefGoogle Scholar
  35. 35.
    Misseri R et al. Inflammatory mediators and growth factors in obstructive renal injury. J Surg Res. 2004;119(2): 149-159PubMedCrossRefGoogle Scholar
  36. 36.
    Sean Eardley K, Cockwell P. Macrophages and progressive tubulointerstitial disease. Kidney Int. 2005;68(2): 437-455PubMedCrossRefGoogle Scholar
  37. 37.
    Wada T et al. Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J Am Soc Nephrol. 2004;15(4):940-948PubMedCrossRefGoogle Scholar
  38. 38.
    Pittock ST et al. MCP-1 is up-regulated in unstressed and stressed HO-1 knockout mice: pathophysiologic correlates. Kidney Int. 2005;68(2):611-622PubMedCrossRefGoogle Scholar
  39. 39.
    Esteban V et al. Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol. 2004;15(6):1514-1529PubMedCrossRefGoogle Scholar
  40. 40.
    Inazaki K et al. Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int. 2004;66(2):597-604PubMedCrossRefGoogle Scholar
  41. 41.
    Chevalier RL. Molecular and cellular pathophysiology of obstructive nephropathy. Pediatr Nephrol. 1999;13(7):612-619PubMedCrossRefGoogle Scholar
  42. 42.
    McVary KT, Maizels M. Urinary obstruction reduces glomerulogenesis in the developing kidney: a model in the rabbit. J Urol. 1989;142(2 pt 2):646-651. discussion 667-8PubMedGoogle Scholar
  43. 43.
    Peters CA et al. The response of the fetal kidney to obstruction. J Urol. 1992;148(2 pt 2):503-509PubMedGoogle Scholar
  44. 44.
    Chevalier RL et al. Recovery following relief of unilateral ureteral obstruction in the neonatal rat. Kidney Int. 1999;55(3):793-807PubMedCrossRefGoogle Scholar
  45. 45.
    Okuda S et al. Influence of age on deterioration of the remnant kidney in uninephrectomized rats. Clin Sci Lond. 1987;72(5):571-576PubMedGoogle Scholar
  46. 46.
    O’Donnell MP et al. Age is a determinant of the glomerular morphologic and functional responses to chronic nephron loss. J Lab Clin Med. 1985;106(3):308-313PubMedGoogle Scholar
  47. 47.
    Quinlan MR et al. Exploring mechanisms involved in renal tubular sensing of mechanical stretch following ureteric obstruction. Am J Physiol Ren Physiol. 2008; 295(1):F1-F11CrossRefGoogle Scholar
  48. 48.
    Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE. 2002;2002(119):PE6PubMedCrossRefGoogle Scholar
  49. 49.
    Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260(5111):1124-1127PubMedCrossRefGoogle Scholar
  50. 50.
    Klahr S, Ishidoya S, Morrissey J. Role of angiotensin II in the tubulointerstitial fibrosis of obstructive nephropathy. Am J Kidney Dis. 1995;26(1):141-146PubMedCrossRefGoogle Scholar
  51. 51.
    Chertin B et al. Conservative treatment of ureteropelvic junction obstruction in children with antenatal diagnosis of hydronephrosis: lessons learned after 16 years of follow-up. Eur Urol. 2006;49(4):734-738PubMedCrossRefGoogle Scholar
  52. 52.
    Rosen S, Heyman SN. Difficulties in understanding human “acute tubular necrosis”: limited data and flawed animal models. Kidney Int. 2001;60(4):1220-1224PubMedCrossRefGoogle Scholar
  53. 53.
    Lieberthal W, Nigam SK. Acute renal failure II. Experimental models of acute renal failure: imperfect but indispensable. Am J Physiol Ren Physiol. 2000;278 (1):F1-F12Google Scholar
  54. 54.
    Mizuguchi Y et al. A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction. Am J Physiol Ren Physiol. 2008;295(5):F1545-F1553CrossRefGoogle Scholar
  55. 55.
    Lee RS et al. Temporal variations of the postnatal rat urinary proteome as a reflection of systemic maturation. Proteomics. 2008;8(5):1097-112PubMedCrossRefGoogle Scholar
  56. 56.
    Decramer S et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med. 2006;12(4):398-400PubMedCrossRefGoogle Scholar
  57. 57.
    Mostbeck GH, Zontsich T, Turetschek K. Ultrasound of the kidney: obstruction and medical diseases. Eur Radiol. 2001;11(10):1878-1889PubMedCrossRefGoogle Scholar
  58. 58.
    Shokeir AA. The diagnosis of upper urinary tract obstruction. BJU Int. 1999;83(8):893-900. quiz 900–1PubMedCrossRefGoogle Scholar
  59. 59.
    Platt JF, Rubin JM, Ellis JH. Distinction between obstructive and nonobstructive pyelocaliectasis with duplex Doppler sonography. Am J Roentgenol. 1989;153(5):997-1000Google Scholar
  60. 60.
    Shokeir AA et al. Renal doppler ultrasound in children with obstructive uropathy: Effect of intravenous normal saline fluid load and furosemide. J Urol. 1996;156(4):1455-1458PubMedCrossRefGoogle Scholar
  61. 61.
    Whitaker RH. Diagnosis of obstruction in dilated ureters. Ann R Coll Surg Engl. 1973;53(3):153-166PubMedGoogle Scholar
  62. 62.
    Sperling H et al. The Whitaker test, a useful tool in renal grafts? Urology. 2000;56(1):49-52PubMedCrossRefGoogle Scholar
  63. 63.
    Dubovsky EV, Russell CD. Advances in radionuclide evaluation of urinary tract obstruction. Abdom Imaging. 1998;23(1):17-26PubMedCrossRefGoogle Scholar
  64. 64.
    English PJ et al. Modified method of diuresis renography for the assessment of equivocal pelviureteric junction obstruction. Br J Urol. 1987;59(1):10-14PubMedCrossRefGoogle Scholar
  65. 65.
    Upsdell SM, Testa HJ, Lawson RS. The F-15 diuresis renogram in suspected obstruction of the upper urinary tract. Br J Urol. 1992;69(2):126-131PubMedCrossRefGoogle Scholar
  66. 66.
    Pais VM, Strandhoy JW, Assimos DG. Pathophysiology of urinary tract obstruction. In: Wein AJ et al., eds. Campbell-Walsh Urology. Philadelphia, PA: Saunders; 2006Google Scholar
  67. 67.
    Smith RC et al. Diagnosis of acute flank pain: value of unenhanced helical CT. Am J Roentgenol. 1996;166(1):97-101Google Scholar
  68. 68.
    Gentle DL et al. Protease inhibitor-induced urolithiasis. Urology. 1997;50(4):508-511PubMedCrossRefGoogle Scholar
  69. 69.
    El-Nahas AR et al. Role of multiphasic helical computed tomography in planning surgical treatment for pelvi-ureteric junction obstruction. BJU Int. 2004;94(4):582-587PubMedCrossRefGoogle Scholar
  70. 70.
    Lawler LP et al. Adult ureteropelvic junction obstruction: insights with three-dimensional multi-detector row CT. Radiographics. 2005;25(1):121-134PubMedCrossRefGoogle Scholar
  71. 71.
    Leyendecker JR, Barnes CE, Zagoria RJ. MR urography: techniques and clinical applications. Radiographics. 2008;28(1):23-46. discussion 46–7PubMedCrossRefGoogle Scholar
  72. 72.
    Karabacakoglu A et al. Diagnostic value of diuretic-enhanced excretory MR urography in patients with obstructive uropathy. Eur J Radiol. 2004;52(3):320-327PubMedCrossRefGoogle Scholar
  73. 73.
    Lefort C et al. Dynamic MR urography in urinary tract obstruction: implementation and preliminary results. Abdom Imaging. 2006;31(2):232-240PubMedCrossRefGoogle Scholar
  74. 74.
    Farnham SB et al. Pediatric urological causes of hypertension. J Urol. 2005;173(3):697-704PubMedCrossRefGoogle Scholar
  75. 75.
    Kinn AC. Ureteropelvic junction obstruction: long-term followup of adults with and without surgical treatment. J Urol. 2000;164(3 pt 1):652-656PubMedGoogle Scholar
  76. 76.
    Parkhouse HF et al. Long-term outcome of boys with posterior urethral valves. Br J Urol. 1988;62(1):59-62PubMedCrossRefGoogle Scholar
  77. 77.
    Vaughan ED Jr, Gillenwater JY. Diagnosis, characterization and management of post-obstructive diuresis. J Urol. 1973;109(2):286-292PubMedGoogle Scholar
  78. 78.
    Jones DA, George NJ, O’Reilly PH. Postobstructive renal function. Semin Urol. 1987;5(3):176-190PubMedGoogle Scholar
  79. 79.
    Nyman MA, Schwenk NM, Silverstein MD. Management of urinary retention: rapid versus gradual decompression and risk of complications. Mayo Clin Proc. 1997;72(10):951-956PubMedCrossRefGoogle Scholar
  80. 80.
    Schlossberg SM, Vaughan ED Jr. The mechanism of unilateral post-obstructive diuresis. J Urol. 1984;131(3): 534-536PubMedGoogle Scholar
  81. 81.
    Kim SW et al. Diminished renal expression of aquaporin water channels in rats with experimental bilateral ureteral obstruction. J Am Soc Nephrol. 2001;12(10): 2019-2028PubMedGoogle Scholar
  82. 82.
    Frokiaer J et al. Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol. 1996;270(4 pt 2): F657-F668PubMedGoogle Scholar
  83. 83.
    Kim SW et al. Diminished expression of sodium transporters in the ureteral obstructed kidney in rats. Nephron Exp Nephrol. 2004;96(3):e67-76PubMedCrossRefGoogle Scholar
  84. 84.
    Norregaard R et al. COX-2 activity transiently contributes to increased water and NaCl excretion in the polyuric phase after release of ureteral obstruction. Am J Physiol Ren Physiol. 2007;292(5):F1322-1333CrossRefGoogle Scholar

Copyright information

© Springer London 2011

Authors and Affiliations

  • Glenn M. Cannon
    • 1
  • Richard S. Lee
    • 2
  1. 1.Department of UrologyChildren’s Hospital Boston, Harvard Medical SchoolBostonUSA
  2. 2.Department of UrologyChildren’s Hospital BostonBostonUSA

Personalised recommendations