Skip to main content

Myocardial Contrast Echocardiography in the Emergency Department

  • Chapter
  • First Online:
Echocardiography in Acute Coronary Syndrome

Emergency departments across the United States annually treat close to 6 million patients who present with chest pain (CP).1 Only a minority of these patients (10–30%) are ultimately diagnosed as having an acute myocardial infarction or acute coronary syndrome (ACS).2, 3 Yet, many patients with noncardiac CP are admitted to the hospital or to observation units incurring enormous burden to the health-care system. It has been estimated that the majority of patients admitted to the hospital with CP have a noncardiac etiology.1 Of those who do have ACS, the standard diagnostic algorithms that are currently employed are frequently nondiagnostic, leading to a delayed or even missed diagnosis.2–4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nawar EW, Niska RW, Xu J. National Hospital Ambulatory Medical Care Survey: 2005 Emergency Department Summary. Advance Data from Vital and Health Statistics; no. 386. Centers for Disease Control and Prevention, and the National Center for Health Statistics. Available at: http://www.cdc.gov/nchs

  2. Pope JH, Aufderheide TP, Ruthazer R, et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med. 2000;342:1163–1170.

    Article  PubMed  CAS  Google Scholar 

  3. Hamm CW, Goldmann BU, Heeschen C, Kreymann G, Berger J, Meinertz T. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I. N Engl J Med. 1997;337:1648–1653.

    Article  PubMed  CAS  Google Scholar 

  4. Mehta RH, Eagle KA. Missed diagnoses of acute coronary syndromes in the emergency room – continuing challenges. N Engl J Med. 2000;342:1207–1210.

    Article  PubMed  CAS  Google Scholar 

  5. Lee TH, Rouan GW, Weisberg MC et al. Sensitivity of routine clinical criteria for diagnosing myocardial infarction within 24 hours of hospitalization. Ann Intern Med. 1987;106:181–186.

    PubMed  CAS  Google Scholar 

  6. Gibler WB, Young GP, Hedges JR, et al. Acute myocardial infarction in chest pain patients with nondiagnostic ECGs: serial CK-MB sampling in the emergency department. Ann Emerg Med. 1992;21:504–512.

    Article  PubMed  CAS  Google Scholar 

  7. Malasky BR, Alpert JS. Diagnosis of myocardial injury by biochemical markers: problems and promises. Cardiol Rev. 2002;10:306–317.

    Article  PubMed  Google Scholar 

  8. Babuin L, Vasile VC, Rio Perez JA, et al. Elevated cardiac troponin is an independent risk factor for short- and long-term mortality in medical intensive care unit patients. Crit Care Med. 2008;36:759–765.

    Article  PubMed  CAS  Google Scholar 

  9. Maeder M, Fehr T, Rickli H, Ammann P. Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest. 2006;129: 1349–1366.

    Article  PubMed  CAS  Google Scholar 

  10. Rude RE, Poole WK, Muller JE, et al. Electrocardiographic and clinical criteria for recognition of acute myocardial infarction based on analysis of 3,697 patients. Am J Cardiol. 1983;52:936–942.

    Article  PubMed  CAS  Google Scholar 

  11. Kaufmann B, Wei K, Lindner JR. Contrast echocardiography. Curr Prob Cardiol. 2007;32: 45–96.

    Article  Google Scholar 

  12. Sabia P, Afrookteh A, Touchstone DA, Keller MW, Esquivel L, Kaul S. Value of regional wall motion abnormality in the emergency room diagnosis of acute myocardial infarction: a prospective study using 2-dimensional echocardiography. Circulation. 1991;84:I85–I92.

    PubMed  CAS  Google Scholar 

  13. Sabia P, Abbott RD, Afrookteh A, Keller MW, Touchstone DA, Kaul S. The importance of two-dimensional echocardiographic assessment of left ventricular systolic function in patients presenting to the emergency room with cardiac-related symptoms. Circulation. 1997;96: 785–792.

    Google Scholar 

  14. Reilly JP, Tunick PA, Timmermans RJ, Stein B, Rosenzweig BP, Kronzon I. Contrast echocardiography clarifies uninterpretable wall motion in intensive care unit patients. J Am Coll Cardiol. 2000;35:485–490.

    Article  PubMed  CAS  Google Scholar 

  15. Crouse LJ, Cheirif J, Hanly DE, et al. Opacification and border delineation improvement in patients with suboptimal endocardial border definition in routine echocardiography: results of the Phase III Albunex Multicenter Trial. J Am Coll Cardiol. 1993;22:1494–1500.

    Article  PubMed  CAS  Google Scholar 

  16. Rainbird AJ, Mulvagh SL, Oh JK, et al. Contrast dobutamine stress echocardiography: clinical practice assessment in 300 consecutive patients. J Am Soc Echocardiogr. 2001;5:378–385.

    Google Scholar 

  17. Hoffmann R, von BS, ten CF et al. Assessment of systolic left ventricular function: a multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. Eur Heart J. 2005;6:607–616.

    Google Scholar 

  18. Dolan MS, Riad K, El-Shafei A, et al. Effect of intravenous contrast for left ventricular opacification and border definition on sensitivity and specificity of dobutamine stress echocardiography compared with coronary angiography in technically difficult patients. Am Heart J. 2001;5:908–915.

    Article  Google Scholar 

  19. Lindner JR, Dent JM, Moos SP, Jayaweera AR, Kaul S. Enhancement of left ventricular cavity opacification by harmonic imaging after venous injection of Albunex. Am J Cardiol. 1997;79:1657–1662.

    Article  PubMed  CAS  Google Scholar 

  20. Rinkevich D, Kaul S, Wang XQ, et al. Regional left ventricular perfusion and function in patients presenting to the emergency department with chest pain and no ST-segment elevation. Eur Heart J. 2005;26:1606–1611.

    Article  PubMed  Google Scholar 

  21. Ward RP, Weinert L, Spencer KT, et al. Quantitative diagnosis of apical cardiomyopathy using contrast echocardiography. J Am Soc Echocardiogr. 2002;15:316–322.

    Article  PubMed  Google Scholar 

  22. Abe Y, Kondo M, Matsuoka R, Araki M, Dohyama K, Tanio H. Assessment of clinical features in transient left ventricular apical ballooning. J Am Coll Cardiol. 2003;41:737–742.

    Article  PubMed  Google Scholar 

  23. Jayaweera AR, Edwards N, Glasheen WP, Villanueva FS, Abbott RD, Kaul S. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res. 1994;74:1157–1165.

    PubMed  CAS  Google Scholar 

  24. Lindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S. Microvascular rheology of definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr. 2002;5:396–403.

    Google Scholar 

  25. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97:473–483.

    PubMed  CAS  Google Scholar 

  26. Kassab GS, Lin DH, Fung YC. Morphometry of pig coronary venous system. Am J Physiol. 1994;7(6 Pt 2):H2100–H2113.

    Google Scholar 

  27. Coggins MP, Sklenar J, Le DE, Wei K, Lindner JR, Kaul S. Noninvasive prediction of ultimate infarct size at the time of acute coronary occlusion based on the extent and magnitude of collateral-derived myocardial blood flow. Circulation. 2001;104:2471–2477.

    Article  PubMed  CAS  Google Scholar 

  28. Tong KL, Kaul S, Wang X, et al. Myocardial contrast echocardiography versus thrombolysis in myocardial infarction score in patients presenting to the emergency department with chest pain and a nondiagnostic electrocardiogram. J Am Coll Cardiol. 2005;46:920–927.

    Article  PubMed  Google Scholar 

  29. Kaul S, Senior R, Firschke C, et al. Incremental value of cardiac imaging in patients presenting to the emergency department with chest pain and without ST-segment elevation: a multicenter study. Am Heart J. 2004;148:129–136.

    Article  PubMed  Google Scholar 

  30. Gewirtz H, Fischman AJ, Abraham S, Gilson M, Strauss HW, Alpert NM. Positron emission tomographic measurements of absolute regional myocardial blood flow permits identification of nonviable myocardium in patients with chronic myocardial infarction. J Am Coll Cardiol. 1994;23:851–859.

    Article  PubMed  CAS  Google Scholar 

  31. Lafitte S, Higashiyama A, Masugata H, et al. Contrast echocardiography can assess risk area and infarct size during coronary occlusion and reperfusion: experimental validation. J Am Coll Cardiol. 2002;39:1546–1554.

    Article  PubMed  Google Scholar 

  32. Leong-Poi H, Coggins MP, Sklenar J, Jayaweera AR, Wang XQ, Kaul S. Role of collateral blood flow in the apparent disparity between the extent of abnormal wall thickening and perfusion defect size during acute myocardial infarction and demand ischemia. J Am Coll Cardiol. 2005;45:565–572.

    Article  PubMed  Google Scholar 

  33. Balcells E, Powers ER, Lepper W, et al. Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve. J Am Coll Cardiol. 2003;41:827–833.

    Article  PubMed  Google Scholar 

  34. Micari A, Belcik TA, Balcells EA, et al. Improvement in microvascular reflow and reduction of infarct size with adenosine in patients undergoing primary coronary stenting. Am J Cardiol. 2005;96:1410–1415.

    Article  PubMed  CAS  Google Scholar 

  35. Ito H, Okamura A, Iwakura K et al. Myocardial perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation. 1996;93:1993–1999.

    PubMed  CAS  Google Scholar 

  36. Iwakura K, Ito H, Takiuchi S, et al. Alternation in the coronary blood flow velocity pattern in patients with no reflow and reperfused acute myocardial infarction. Circulation. 1996;94:1269–1275.

    PubMed  CAS  Google Scholar 

  37. Kamp O, Lepper W, Vanoverschelde JL, et al. Serial evaluation of perfusion defects in patients with a first acute myocardial infarction referred for primary PTCA using intravenous myocardial contrast echocardiography. Eur Heart J. 2001;22:1485–1495.

    Article  PubMed  CAS  Google Scholar 

  38. Porter TR, Li S, Oster R, Deligonul U. The clinical implications of no reflow demonstrated with intravenous perfluorocarbon containing microbubbles following restoration of thrombolysis in myocardial infarction (TIMI) 3 flow in patients with acute myocardial infarction. Am J Cardiol. 1998;82:1173–1177.

    Article  PubMed  CAS  Google Scholar 

  39. Ito H, Maruyama A, Iwakura K, et al. Clinical implications of the 舖no reflow舗 phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation. 1996;93:223–228.

    PubMed  CAS  Google Scholar 

  40. Janardhanan R, Moon JC, Pennell DJ, Senior R. Myocardial contrast echocardiography accurately reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. Am Heart J. 2005;149:355–362.

    Article  PubMed  Google Scholar 

  41. Main ML, Magalski A, Chee NK, Coen MM, Skolnick DG, Good TH. Full-motion pulse inversion power Doppler contrast echocardiography differentiates stunning from necrosis and predicts recovery of left ventricular function after acute myocardial infarction. J Am Coll Cardiol. 2001;38:1390–1394.

    Article  PubMed  CAS  Google Scholar 

  42. Janardhanan R, Moon JC, Pennell DJ, Senior R. Myocardial contrast echocardiography accurately reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. Am Heart J. 2005;149:355–362.

    Article  PubMed  Google Scholar 

  43. Andrassy P, Zielinska M, Busch R, Schomig A, Firschke C. Myocardial blood volume and the amount of viable myocardium early after mechanical reperfusion of acute myocardial infarction: prospective study using venous contrast echocardiography. Heart. 2002;87:350–355.

    Google Scholar 

  44. Villanueva FS, Glasheen WP, Sklenar J, Kaul S. Assessment of risk area during coronary occlusion and infarct size after reperfusion with myocardial contrast echocardiography using left and right atrial injections of contrast. Circulation. 1993;88:596–604.

    PubMed  CAS  Google Scholar 

  45. Sakuma T, Okada T, Hayashi Y, Otsuka M, Hirai Y. Optimal time for predicting left ventricular remodeling after successful primary coronary angioplasty in acute myocardial infarction using serial myocardial contrast echocardiography and magnetic resonance imaging. Circ J. 2002;66:685–690.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Todd Belcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Belcik, J.T., Lindner, J.R. (2009). Myocardial Contrast Echocardiography in the Emergency Department. In: Herzog, E., Chaudhry, F. (eds) Echocardiography in Acute Coronary Syndrome. Springer, London. https://doi.org/10.1007/978-1-84882-027-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-027-2_28

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-026-5

  • Online ISBN: 978-1-84882-027-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics