Skip to main content

Echo Assessment of Myocardial Viability

  • Chapter
  • First Online:
Echocardiography in Acute Coronary Syndrome

Heart failure is a leading cause of morbidity and mortality with a 5-year mortality rate as high as 50%, making it the leading cause of hospitalization in patients over the age of 65 years.1 The leading cause of heart failure is coronary artery disease/acute coronary syndromes. Numerous studies have shown that left ventricular (LV) systolic function is a strong predictor of future cardiovascular events and LV dysfunction is a potentially reversible condition related to myocardial stunning, hibernation, or a combination of the two mechanisms. Segments that lose function as a result of an acute ischemic insult despite the restoration of normal perfusion are known as stunned myocardium (transient postischemic dysfunction). Myocardial stunning results from a mismatch between coronary flow and myocardial function and these segments are likely to recover function spontaneously over time. On the other hand, hibernating myocardium is the term used to refer to segments rendered dysfunctional secondary to chronic ischemia. Hibernating myocardium results from a compensatory decrease in myocardial function as a consequence of chronic ischemia. Both stunned and hibernating myocardium can potentially improve their function and are collectively referred to as “viable myocardium”.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Massie BM, Shah NB. Evolving trends in the epidemiologic factors of heart failure: rationale for preventive strategies and comprehensive disease management. Am Heart J. 1997;133(6):703–712.

    Article  PubMed  CAS  Google Scholar 

  2. Wu KC, Lima JA. Noninvasive imaging of myocardial viability: current techniques and future developments. Circ Res. 2003;93(12):1146–1158.

    Article  PubMed  CAS  Google Scholar 

  3. Bonow RO. The hibernating myocardium: implications for management of congestive heart failure. Am J Cardiol. 1995;75(3):17A–25A.

    Article  PubMed  CAS  Google Scholar 

  4. Baker DW, Jones R, Hodges J, Massie BM, Konstam MA, Rose EA. Management of heart failure. III. The role of revascularization in the treatment of patients with moderate or severe left ventricular systolic dysfunction. JAMA. 1994;272(19):1528–1534.

    Article  PubMed  CAS  Google Scholar 

  5. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151–1158.

    Article  PubMed  Google Scholar 

  6. deFilippi CR, Willett DL, Irani WN, Eichhorn EJ, Velasco CE, Grayburn PA. Comparison of myocardial contrast echocardiography and low-dose dobutamine stress echocardiography in predicting recovery of left ventricular function after coronary revascularization in chronic ischemic heart disease. Circulation. 1995;92(10):2863–2868.

    PubMed  CAS  Google Scholar 

  7. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–1453.

    Article  PubMed  CAS  Google Scholar 

  8. Tuttle RR, Pollock GD, Todd G, MacDonald B, Tust R, Dusenberry W. The effect of dobutamine on cardiac oxygen balance, regional blood flow, and infarction severity after coronary artery narrowing in dogs. Circ Res. 1977;41(3):357–364.

    PubMed  CAS  Google Scholar 

  9. Schulz R, Rose J, Martin C, Brodde OE, Heusch G. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation. 1993;88(2):684–695.

    PubMed  CAS  Google Scholar 

  10. Willerson JT, Hutton I, Watson JT, Platt MR, Templeton GH. Influence of dobutamine on regional myocardial blood flow and ventricular performance during acute and chronic myocardial ischemia in dogs. Circulation. 1976;53(5):828–833.

    PubMed  CAS  Google Scholar 

  11. Nagueh SF, Mikati I, Weilbaecher D, et al. Relation of the contractile reserve of hibernating myocardium to myocardial structure in humans. Circulation. 1999;100(5):490–496.

    PubMed  CAS  Google Scholar 

  12. Poldermans D, Rambaldi R, Bax JJ, et al. Safety and utility of atropine addition during dobutamine stress echocardiography for the assessment of viable myocardium in patients with severe left ventricular dysfunction. Eur Heart J. 1998;19(11):1712–1718.

    Article  PubMed  CAS  Google Scholar 

  13. Meza MF, Kates MA, Barbee RW, et al. Combination of dobutamine and myocardial contrast echocardiography to differentiate postischemic from infarcted myocardium. J Am Coll Cardiol. 1997;29(5):974–984.

    Article  PubMed  CAS  Google Scholar 

  14. Hoffmann R, Altiok E, Nowak B, et al. Strain rate measurement by doppler echocardiography allows improved assessment of myocardial viability inpatients with depressed left ventricular function. J Am Coll Cardiol. 2002;39(3):443–449.

    Article  PubMed  Google Scholar 

  15. Ling LH, Christian TF, Mulvagh SL, et al. Determining myocardial viability in chronic ischemic left ventricular dysfunction: a prospective comparison of rest-redistribution thallium 201 single-photon emission computed tomography, nitroglycerin-dobutamine echocardiography, and intracoronary myocardial contrast echocardiography. Am Heart J. 2006;151(4): 882–889.

    Article  PubMed  Google Scholar 

  16. Chaudhry FA, Tauke JT, Alessandrini RS, Vardi G, Parker MA, Bonow RO. Prognostic implications of myocardial contractile reserve in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 1999;34(3):730–738.

    Article  PubMed  CAS  Google Scholar 

  17. Cusick DA, Castillo R, Quigg RJ, Chaudhry FA, Bonow RO. Predictive accuracy of dobutamine stress echocardiography for identification of viable myocardium in patients with severely reduced left ventricular ejection fraction. J Heart Lung Transplant. 1997; 15(186S).

    Google Scholar 

  18. Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol. 2001;26(2):147–186.

    Article  PubMed  CAS  Google Scholar 

  19. Afridi I, Kleiman NS, Raizner AE, Zoghbi WA. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation. 1995;91(3):663–670.

    PubMed  CAS  Google Scholar 

  20. Yao SS, Chaudhry FA. Assessment of myocardial viability with dobutamine stress echocardiography in patients with ischemic left ventricular dysfunction. Echocardiography. 2005;22(1):71–83.

    Article  PubMed  Google Scholar 

  21. Meluzin J, Cerny J, Frelich M, et al. Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. Investigators of this Multicenter Study. J Am Coll Cardiol. 1998;32(4):912–920.

    Article  PubMed  CAS  Google Scholar 

  22. Arnese M, Cornel JH, Salustri A, et al. Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with 201Tl single-photon emission computed tomography. Circulation. 1995;91(11):2748–2752.

    PubMed  CAS  Google Scholar 

  23. Bonow RO. Identification of viable myocardium. Circulation. 1996;94(11):2674–2680.

    PubMed  CAS  Google Scholar 

  24. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation. 1991;83(1):26–37.

    PubMed  CAS  Google Scholar 

  25. Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Frank JA, Bonow RO. Regional left ventricular wall thickening. Relation to regional uptake of 18 fluorodeoxyglucose and 201Tl in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation. 1992;86(4):1125–1137.

    PubMed  CAS  Google Scholar 

  26. Helfant RH, Pine R, Meister SG, Feldman MS, Trout RG, Banka VS. Nitroglycerin to unmask reversible asynergy. Correlation with post coronary bypass ventriculography. Circulation. 1974;50(1):108–113.

    PubMed  CAS  Google Scholar 

  27. Martinez RR, Bennett J, Eikman EA, Fontanet HL, Sayad DE. Comparison of nitroglycerin magnetic resonance imaging with dobutamine echocardiography for predicting recovery of function after revascularization. Am J Cardiol. 2000;85(10):1250–1252.

    Article  PubMed  CAS  Google Scholar 

  28. Fujita M, Yamanishi K, Hirai T, et al. Significance of collateral circulation in reversible left ventricular asynergy by nitroglycerin in patients with relatively recent myocardial infarction. Am Heart J. 1990;120(3):521–528.

    Article  PubMed  CAS  Google Scholar 

  29. Greco C, Tanzilli G, Ciavolella M, et al. Nitroglycerin-induced changes in myocardial sestamibi uptake to detect tissue viability: radionuclide comparison before and after revascularization. Coron Artery Dis. 1996;7(12):877–884.

    Article  PubMed  CAS  Google Scholar 

  30. Senior R, Swinburn JM. Incremental value of myocardial contrast echocardiography for the prediction of recovery of function in dobutamine nonresponsive myocardium early after acute myocardial infarction. Am J Cardiol. 2003;91(4):397–402.

    Article  PubMed  Google Scholar 

  31. Bax JJ, Wijns W, Cornel JH, et al. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol. November 15, 1997;30(6):1451–1460.

    Article  PubMed  CAS  Google Scholar 

  32. Cornel JH, Bax JJ, Elhendy A, et al. Biphasic response to dobutamine predicts improvement of global left ventricular function after surgical revascularization in patients with stable coronary artery disease. J Am Coll Cardiol. 1998;31:1002–1010.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sripal Bangalore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bangalore, S., Chaudhry, F.A. (2009). Echo Assessment of Myocardial Viability. In: Herzog, E., Chaudhry, F. (eds) Echocardiography in Acute Coronary Syndrome. Springer, London. https://doi.org/10.1007/978-1-84882-027-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-027-2_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-026-5

  • Online ISBN: 978-1-84882-027-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics