Skip to main content

Thermochemical Conversion Processes

  • Chapter
Biofuels

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Biorenewable feedstocks can be used as a solid fuel, or converted into liquid or gaseous forms for the production of electric power, heat, chemicals, or gaseous and liquid fuels. Thermochemical conversion processes include three subcategories: pyrolysis, gasification, and liquefaction. Biomass thermochemical conversion technologies such as pyrolysis and gasification are certainly not the most important options at present; combustion is responsible for over 97% of the world’s bioenergy production. Liquefaction can be accomplished directly or indirectly. Direct liquefaction involves hydrothermal liquefaction and rapid pyrolysis to produce liquid tars and oils and/or condensable organic vapors. Indirect liquefaction involves the use of catalysts to convert non-condensable, gaseous products of pyrolysis or gasification into liquid products. Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. The liquid fraction of the pyrolysis products consists of two phases: an aqueous phase containing a wide variety of organo-oxygen compounds of low molecular weight and a non-aqueous phase containing insoluble organics of high molecular weight. Biomass gasification is the latest generation of biomass energy conversion processes, and is being used to improve the efficiency and to reduce the investment costs of biomass electricity generation through the use gas turbine technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appel, H.R., Fu, Y.C., Friedman, S., Yavorsky, P.M., Wender, I. 1971. Converting organic wastes to oil. US Burea of Mines Report of Investigation. No. 7560.

    Google Scholar 

  • Appell, H., Fu, Y., Friedman, S., Yavorsky, P., Wender, I. 1980. Converting organic wastes to oil: A replenishable energy source. Washington, D.C. Bureau of Mines, U.S. Department of the Interior.

    Google Scholar 

  • Babu, B.V., Chaurasia, A.S. 2003. Modeling for pyrolysis of solid particle: Kinetics and heat transfer effects. Energy Convers Mgmt 44:2251–2275.

    Article  CAS  Google Scholar 

  • Byrd, A.J., Pant, K.K., Gupta, R.B. 2007. Hydrogen production from glucose using Ru/Al2 O3 catalyst in supercritical water. Ind Eng Chem Res 46:3574–3579.

    Article  CAS  Google Scholar 

  • Balat, M. 2008. Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis. Energy Sources, Part A 30:620–625.

    Article  CAS  Google Scholar 

  • Beaumont, O. 1985. Flash pyrolysis products from beech wood. Wood Fiber Sci. 17:228–239.

    CAS  Google Scholar 

  • Barooah, J.N., Long, V.D. 1976. Rates of thermal decomposition of some carbonaceous materials in a fluidized bed. Fuel 55:116–120.

    Article  CAS  Google Scholar 

  • Chen, G., Spliethoff, H., Andries, J., Glazer, M.P., Yang, L.B. 2004 Biomass gasification in acirculating fluidised bed-Part I: Preliminary xxperiments and modeling development. Energy Sources 26:485–498.

    Article  CAS  Google Scholar 

  • Chornet, E., Overend, R.P. 1985. Fundamentals of thermochemical biomass conversion, pp. 967–1002. Elsevier, New York.

    Google Scholar 

  • Datta, B., McAuliffe, C. 1993. The production of fuels by cellulose liquefaction. In Proceedings of First Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry. Golden, CO: National Renewable Energy Laboratory. 931–946.

    Google Scholar 

  • Demirbas, A. 1985. A new method on wood liquefaction.Chim. Acta Turc 13:363–368.

    CAS  Google Scholar 

  • Demirbas, A. 1998. Kinetics for non-isothermal flash pyrolysis of hazelnut shell. Bioresource Technol 66:247–252.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Mgmt 41:633–646.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2007. The influence of temperature on the yields of compounds existing in bio-oils obtaining from biomass samples via pyrolysis. Fuel Proc Technol 88:591–597.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2008. The Importance of bioethanol and biodiesel from biomass. Energy Sources Part B 3:177–185.

    Article  CAS  Google Scholar 

  • Desrosiers, R.E., Lin, R.J. 1984. A moving-boundary model of biomass pyrolysis. Solar Energy 33:187–196.

    Article  CAS  Google Scholar 

  • Dry, M E. 1981. The Fischer–Tropsch synthesis. In Anderson, J.R., Boudart, M. (eds.) Catalysis-Science and Technology, Vol. 1, p. 160. Springer, New York.

    Google Scholar 

  • Eager, R.L., Mathews, J.F., Pepper, J.M. 1982. Liquefaction of aspen poplar wood. Canadian J Chem Eng 60:289–94.

    Article  CAS  Google Scholar 

  • Feng, W., van der Kooi, H.J., Arons, J.D.S. 2004. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chem Eng Proc 43:1459–1467.

    Article  CAS  Google Scholar 

  • Gadhe, J.B., Gupta, R.B. 2007. Hydrogen production by methanol reforming in supercritical water: Catalysis by in-situ-generated copper nanoparticles. Int J Hydrogen Energy 2007;32:2374–2381.

    Article  CAS  Google Scholar 

  • Goudriaan, F., Peferoen, D. 1990. Liquid fuels from biomass via a hydrothermal process. Chem Eng Sci 45:2729–2734.

    Article  CAS  Google Scholar 

  • Hao, H., Guo, L., Zhang, X., Guan, Y. 2005. Hydrogen production from catalytic gasification of cellulose in supercritical water. Chem Eng J 110:57–65.

    Article  CAS  Google Scholar 

  • He, W., Li, G., Kong, L., Wang, H., Huang, J., Xu, J. 2008. Application of hydrothermal reaction in resource recovery of organic wastes. Res Conserv Recyc 52:691–699.

    Article  Google Scholar 

  • Hofmann, L., Antal, M.J, Jr. 1984. Numerical simulations of the performance of solar fired flash pyrolysis reactors. Solar Energy 33:427–440.

    Article  CAS  Google Scholar 

  • Inoue, S., Sawayma, S., Dote, Y., Ogi, T. 1997. Behavior of nitrogen during liquefaction of dewatered sewage sludge. Biomass Bioenergy 12:473–475.

    Article  CAS  Google Scholar 

  • Itoh, S., Suzuki, A., Nakamura, T., Yokoyama, S. 1994. Production of heavy oil from sewage sludge by direct thermochemical liquefaction. Proceedings of the IDA and WRPC World Conference on Desalination and Water Treatment. 98:127–133.

    Google Scholar 

  • Jomaa, S. 2001. Combined sludge treatment and production of useful organic byproducts using hydrothermal oxidation. PhD thesis. Brisbane, Australia: Department of Civil Engineering, Queensland University of Technology.

    Google Scholar 

  • Jomaa, S., Shanableh, A., Khalil, W., and Trebilco, B. 2003. Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products. Adv Environ Res 7:647–53.

    Article  CAS  Google Scholar 

  • Koullas, D.P., Nikolaou, N., Koukkios, E.G. 1998. Modelling non-isothermal kinetics of biomass prepyrolysis at low pressure. Bioresource Technol 63:261–266.

    Article  CAS  Google Scholar 

  • Kranich, W.L. 1984. Conversion of sewage sludge to oil by hydroliquefaction. EPA600/2 84010. Report for the U.S. Environmental Protection Agency. Cincinnati, OH. EPA.

    Google Scholar 

  • Kruse, A., Meier, D., Rimbrecht, P., Schacht, M. 2000. Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res 39:4842–2848.

    Article  CAS  Google Scholar 

  • Minowa, T., Ogi, T., Dote, Y., Yokoyama, S. 1994. Effect of lignin content on direct liquefaction of bark. Int Chem Eng 34:428–30.

    Google Scholar 

  • Minowa, T., Zhen, F., Ogi, T. 1997. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercritical Fluids 13:253–259.

    Google Scholar 

  • Mohan, D., Pittman Jr,. C.U., Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006;20:848–889.

    Article  CAS  Google Scholar 

  • Molten, P.M., Demmitt, T.F., Donovan, J M., Miller, R.K. 1983. Mechanism of conversion of cellulose wastes to liquid in alkaline solution. In Klass, D.L. (ed.). Energy from biomass and wastes III. Chicago, IL: Institute of Gas Technology, p. 293.

    Google Scholar 

  • Ogi, T., Yokoyama, S.D. 1993. Liquid fuel production from woody biomass by direct liquefaction. Sekiyu Gakkaishi 36:73–84.

    CAS  Google Scholar 

  • Ogi, T., Yokoyama, S., Koguchi, K. 1985. Direct liquefaction of wood by alkali and alkaline earth salt in an aqueous phase. Chemical Letters 8:1199–200.

    Article  Google Scholar 

  • Shanableh, A., Jomaa, S. 1998. A versatile supercritical water oxidation system for hazardous Organic waste destruction. In: Fourth national hazardous and solid waste convention, CDRom record no. 1/90, Brisbane, Australia.

    Google Scholar 

  • Stamm, A.J. 1956. Thermal degradation of wood and cellulose. Ind Engng Chem 48:413–417.

    Article  CAS  Google Scholar 

  • Stevens, D.J. 2001. Hot gas conditioning: Recent progress with larger-scale biomass gasification systems. National Renewable Energy Laboratory, NREL/SR51029952, 1617 Cole Boulevard, Golden, CO.

    Google Scholar 

  • Suzuki, A., Yokoyama, S., Murakami, M., Ogi, T., and Koguchi, K. New treatment of sewage sludge by direct thermochemical liquefaction. Chemistry Letters CMLTAG.I 9:1425–1428.

    Google Scholar 

  • Tester, J. W., Cline, J. A. 1999. Hydrolysis and oxidation in sub-critical and supercritical water: connecting process engineering science to molecular interactions. Corrosion 55:1088–100.

    Article  CAS  Google Scholar 

  • Timell, T.E. 1967. Recent progress in the chemistry of wood. Hemicelluloses. Wood Sci Technol 1:45–70.

    Article  CAS  Google Scholar 

  • Tran, D.Q., Charanjit, R. 1978. A kinetic model for pyrolysis of Douglas fir bark. Fuel 57:293–298.

    Article  CAS  Google Scholar 

  • Zhong, Z., Peters, C. J., de Swaan Arons, J. 2002. Thermodynamic modeling of biomass conversion processes. Fluid Phase Equilibria 194–197:805–815.

    Article  Google Scholar 

  • Warnecke, R. 2000. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy 18:489–497.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Thermochemical Conversion Processes. In: Biofuels. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84882-011-1_6

Download citation

Publish with us

Policies and ethics