Skip to main content

Abstract

Oxygen (O2) is the most abundant element in the Earth’s crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes such as biological respiration, and in energy converting systems such as fuel cells. ORR in aqueous solutions occurs mainly by two pathways: the direct 4-electron reduction pathway from O2 to H2O, and the 2-electron reduction pathway from O2 to hydrogen peroxide (H2O2). In non-aqueous aprotic solvents and/or in alkaline solutions, the 1-electron reduction pathway from O2 to superoxide (O2 -) can also occur.

In proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs), ORR is the reaction occurring at the cathode. Normally, the ORR kinetics is very slow. In order to speed up the ORR kinetics to reach a practical usable level in a fuel cell, a cathode ORR catalyst is needed. At the current stage in technology, platinum (Pt)-based materials are the most practical catalysts. Because these Pt-based catalysts are too expensive for making commercially viable fuel cells, extensive research over the past several decades has focused on developing alternative catalysts, including non-noble metal catalysts [1]. These electrocatalysts include noble metals and alloys, carbon materials, quinone and derivatives, transition metal macrocyclic compounds, transition metal chalcogenides, and transition metal carbides. In this chapter, we focus on the O2 reduction reaction, including the reaction kinetics and mechanisms catalyzed by these various catalysts.

To assist readers, we first provide an overview of the following background information: the major electrochemical O2 reduction reaction processes, simple ORR kinetics, and conventional techniques for electrochemical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang L, Zhang J, Wilkinson DP, Wang H. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 2006;156.2:171–82.

    Article  Google Scholar 

  2. Yeager E. Dioxygen electrocatalysis: mechanism in relation to catalyst structure. J Mol Catal 1986;38:5–25.

    Article  Google Scholar 

  3. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. New York: Wiley, 1980.

    Google Scholar 

  4. Song C, Tang Y, Zhang J, Zhang J, Wang H, Shen J, et al., PEM fuel cell reaction kinetics in the temperature range of 23–120 °C. Electrochim Acta 2007;52:2552–61.

    Article  Google Scholar 

  5. Damjanovic A. Temperature dependence of symmetry factors and the significance of the experimental activation energies. J Electroanal Chem 1993;355:57–77.

    Article  Google Scholar 

  6. Zhang J, Tang Y, Song C, Xia Z, Wang H, Zhang J, et al. Effect of relative humidity on PEM fuel cell performance at elevated temperature. Forthcoming 2008.

    Google Scholar 

  7. Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface – a microelectrode investigation. J Electrochem Soc 192;139:2530–7.

    Google Scholar 

  8. Wkabayashi N, Takeichi M, Itagaki M, Uchida H, Watanabe M. Temperature dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode. J Electroanal Chem 2005;574:339–46.

    Article  Google Scholar 

  9. Baker R, Wilkinson DP, Zhang J. Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta. Forthcoming 2008.

    Google Scholar 

  10. Lever ABP. The phthalocyaninds-molecules of enduring value: a two-dimensional analysis of redox potentials. J Porphyrins Phthalocyanines 1999;3:488–99.

    Article  Google Scholar 

  11. Zhang L, Song C, Zhang J, Wang H, Wilkinson DP. Temperature and pH dependent oxygen reduction catalyzed by iron fluoro-porphyrin adsorbed on a graphite electrode. J Electrochem Soc 2005;152:A2421–6.

    Article  Google Scholar 

  12. Song C, Zhang L, Zhang J, Wilkinson DP, Baker R. Temperature dependence of oxygen reduction catalyzed by cobalt fluorophthalocyanine adsorbed on a graphite electrode. Fuel Cells 2007;7:9–15.

    Article  Google Scholar 

  13. Antoine O, Durand R. RRDE study of oxygen reduction on Pt nanoparticles inside Nafion: H2O2 production in PEMFC cathode conditions. J Appl Electrochem 2000;30:839–844.

    Article  Google Scholar 

  14. Taylor RJ, Humffray AA. Electrochemical studies on glassy carbon electrodes II. Oxygen reduction in solutions of high pH (pH>10). J Electroanal Chem 1975;64:63–84.

    Google Scholar 

  15. Paliteiro C, Hamnett A, Goodenough JB. The electroreduction of oxygen on pyrolytic graphite. J Electroanal Chem 1987;233:147–59.

    Article  Google Scholar 

  16. Zhang M, Yan Y, Gong K, Mao L, Guo Z, Chen Y. Electrostatic layer by layer assembled carbon nanotube mutilayer film and its catalytic activity for oxygen reduction reaction. Langmuir 2004;20;8781–5.

    Article  Google Scholar 

  17. Taylor RJ, Humffray AA. Electrochemical studies on glassy carbon electrodes II. Oxygen reduction in solutions of low pH (pH<10). J Electroanal Chem 1975;64:85–94.

    Google Scholar 

  18. Davis M, Clark M, Yeager E, Hovorka F. Oxygen electrode. J Electrochem Soc 1959;106:56.

    Article  Google Scholar 

  19. Appel M, Appleby AJ. A ring disk electrode study of the reduction of oxygen on active carbon in alkaline solution. Electrochim Acta 1978;23:1243–6.

    Article  Google Scholar 

  20. Jurmann G, Tammeveski K. Electroreduction of oxygen on multi-walled carbon nanotube modified highly oriented pyrolytic graphite electrodes in alkaline solution. J Electroanal Chem 2006;597:119–26.

    Article  Google Scholar 

  21. Baez VB, Pletcher D. Preparation and characterization of carbon/titanium dioxide surfaces – the reduction of oxygen. J Electroanal Chem 1995;382:59–64.

    Article  Google Scholar 

  22. Morcos I, Yeager E. Kinetic studies of the oxygen-peroxide couple on pyrolytic graphite Electrochim Acta 1970;15:953–75.

    Article  Google Scholar 

  23. Maldonado S, Stevenson KJ. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 2005;109.10:4707–16.

    Article  Google Scholar 

  24. Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN. O2 reduction on graphite and nitrogen doped graphite: experiment and theory. J Phys Chem B 2006;110:1787–93.

    Article  Google Scholar 

  25. Hu I, Karweik DH, Kuwana T. Activation and deactivation of glassy carbon electrodes. J Electroanal Chem 1985;188:59–72.

    Article  Google Scholar 

  26. Sljukic B, Banks CE, Compton RG. An overview of the electrochemical reduction of oxygen at carbon based modified electrodes. J Iranian Chem Soc 2005;2:1–25.

    Google Scholar 

  27. Maruyama J, Abe I. Cathodic oxygen reduction at the interface between Nafion and electrochemically oxidized glassy carbon surfaces. J Electroanal Chem 2002;527:65–70.

    Article  Google Scholar 

  28. Jia N, Martin RB, Qi Z, Lefebvre MC, Pickup PG. Modification of carbon supported catalysts to improve performance in gas diffusion electrodes. Electrochim Acta 2001;46:2863–9.

    Article  Google Scholar 

  29. Sullivan MG, Kotz R, Haas O. Thick active layers of electrochemically modified glassy carbon, electrochemical impedance studies. J Electrochem Soc 2000;147:308–17.

    Article  Google Scholar 

  30. Huissoud A, Tissot P. Electrochemical reduction of 2-ethyl-9,10-anthraquinone (EAQ) and mediated formation of hydrogen peroxide in a two-phase medium. J Appl Electrochem 1999;29:11–25.

    Article  Google Scholar 

  31. Chen Q. Toward cleaner production of hydrogen peroxide in China. J Cleaner Production 2006;14:708–12.

    Article  Google Scholar 

  32. Huissoud A, Tissot P. Electrochemical reduction of 2-ethyl-9,10-anthraquinone on reticulated vitreous carbon and mediated formation of hydrogen peroxide. J Appl Electrochem 1998;28:653–7.

    Article  Google Scholar 

  33. Gyenge EL, Coloman CW. Electrosynthesis of hydrogen peroxide in acidic solutions by mediated oxygen reduction in a three-phase (aqueous/organic/gaseous) system. J Appl Electrochem 2003;33:655–63, 665–74.

    Google Scholar 

  34. Tammeveski K, Kontturi K, Nichols RJ, Potter RJ, Schiffrin DJ. Surface redox catalysis for O2 reduction on quinone modified glassy electrodes. J Electroanal Chem 2001;515:101–12.

    Article  Google Scholar 

  35. Sarapuu A, Helstein K, Schiffrin DJ, Tammeveski K. Kinetics of oxygen reduction on quinone modified HOPG and BDD electrodes in alkaline solution. Electrochem Solid-State Lett 2005;8:E30–3.

    Article  Google Scholar 

  36. Mirkhalaf F, Tammeveski K, Schiffrin DJ. Substituent effects on the electrocatalytic reduction of oxygen on quinone modified glassy carbon electrodes. Phys Chem Chem Phys 2004;6:1321–7.

    Article  Google Scholar 

  37. Vaik K, Sarapuu A, Tammeveski K, Mirkhalaf F, Schiffrin DJ. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. J Electroanal Chem 2004;564:159–66.

    Article  Google Scholar 

  38. Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K. Electrochemical reduction of oxygen on anthraquinone modified glassy carbon electrodes in alkaline solution. J Electroanal Chem 2003;541:23–9.

    Article  Google Scholar 

  39. Keita B, Nadjo L. Catalytic synthesis of hydrogen peroxide: an attractive electrochemical and photoelectrochemical route to the reduction of oxygen. J Electroanal Chem 1983;145:431–7.

    Article  Google Scholar 

  40. Salimi A, Eshghi H, Sharghi H, Golabi SM, Shamsipur M. Electrocatalytic reduction of dioxygen at the surface of glassy carbon electrodes modified by some anthraquinone substituted podands. Electroanalysis 1999;11:114–9.

    Article  Google Scholar 

  41. Wilson T, Zhang J, Oloman CC, Wayner DDM. Anthraquinone-2-carboxylic-allyl ester as a new electrocatalyst for dioxygen reduction to produce H2O2. Int J Electrochem Sci 2006;1:99–109.

    Google Scholar 

  42. Markovic NM, Ross PN. Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 2002;45:117–229.

    Article  Google Scholar 

  43. Zhdanov VP, Kasemo B. Kinetics of electrochemical O2 reduction on Pt. Electrochem Commun 2006;8:1132–6.

    Article  Google Scholar 

  44. Norskov JK, Rossmeisl J, Logadotir A, Lindqvist L, Kitchin JR, Bligaard T, et al. Origin of the overpotential for oxygen reduction at a fuel cell cathode. J Phys Chem B 2004;108:17886–92.

    Article  Google Scholar 

  45. Shi Z, Zhang J, Liu Z, Wang H, Wilkinson DP. Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts Electrochim Acta 2006;51:1905–16.

    Article  Google Scholar 

  46. Hoare JP. The electrochemistry of oxygen. New York: Wiley, 1968.

    Google Scholar 

  47. Stassi A, D’Urso C, Baglio V, Di Blasi A, Antonucci V, Arico AS, et al. Electrocatalytic behaviour for oxygen reduction reaction of small nanostructured crystalline bimetallic Pt-M supported catalysts. J Appl Electrochem 2006;36:1143–9.

    Article  Google Scholar 

  48. Stamenkovic VR, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site activity. Science 2007;315:493–7.

    Article  Google Scholar 

  49. Jahnke H, Schonborn M, Zimmermann G. Organic dyestuffs as catalysts for fuel cells. Top Cur Chem 1976;61:133–81.

    Article  Google Scholar 

  50. Zagal J, Bindra P, Yeager E. A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 1980;127:1506–17.

    Article  Google Scholar 

  51. Shi C, Anson FC. Catalytic pathways for the electroreduction of O2 by iron terakis(4-N-methylpyridyl)porphyrin or iron tetraphenylporphyrin adsorbed on edge plane pyrolytic graphite electrodes. Inorg Chem 1990;4298–305.

    Google Scholar 

  52. Shigehara K, Anson FC. Electrocatalytic activity of three iron porphyries in the reductions of dioxygen and hydrogen peroxide at graphite electrodes. J Phys Chem 1982;86:2776–83.

    Article  Google Scholar 

  53. Liu H, Weaver M, Wang C, Chang C. Dependence of electrocatalysis for dioxygen reduction by adsorbed cofacial dicobalt porphyrins upon catalyst structure. J Electroanal Chem 1983;145:439–47.

    Article  Google Scholar 

  54. Kadish KM, Fremond L, Ou Z, Shao J, Shi C, Anson FC, et al. Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorrole, and porphyrin-corrole dyads. J Am Chem Soc 2005;127:5625–31.

    Article  Google Scholar 

  55. Shi Z, Zhang J. Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction. J Phys Chem C 2007;111:7084–90.

    Article  Google Scholar 

  56. Alt H, Binder H, Sandstede G. Mechanism of electrocatalytic oxygen reduction on metal chelates. J Catal 1973;28:8–19.

    Article  Google Scholar 

  57. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, et al. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim Acta. Submitted 2008.

    Google Scholar 

  58. Baranton S, Coutanceau C, Garnier E, Leger J-M. How does -FePc catalyst dispersed onto high specific surface carbon support work toward oxygen reduction reaction (orr)? J Electroanal Chem 2006;590:100–10.

    Article  Google Scholar 

  59. Zagal J, Sen RK, Yeager E. Oxygen reduction by Co(II) tetrasulfonatephthalocyanine irreversibly adsorbed on a stress anneled pyrolytic graphite electrode surface. J Electroanal Chem 1977;83:207–13.

    Google Scholar 

  60. Collman JP, Marrocco M, Denisevich P. Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrode. J Electroanal Chem 1979;101:117–22.

    Article  Google Scholar 

  61. Savy M, Andro P, Bernard C, Magner G. Studies of oxygen reduction on the monomeres and polymeres-i. Principles, fundamentals, and choice of the central ion. Electrochim Acta 1973;18:191–7.

    Article  Google Scholar 

  62. Alonso-Vante N, Fieber-Erdmann M, Rossner H, Holub-Krappe E, Giorgetti Ch, Tadjeddine A, et al. The catalytic center of transition metal chalcogenides vis-à-vis the oxygen reduction reaction: an in situ electrochemical EXAFS study. J Phys IV France 1997;7:887–9.

    Article  Google Scholar 

  63. Alonso-Vante N, Jaegermann W, Tributsch H, Honle W, Yvon K. Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters. J Am Chem Soc 1987;109:3251–7.

    Article  Google Scholar 

  64. Alonso-Vante N, Tributsch H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 1986;323:431–2.

    Article  Google Scholar 

  65. Schmidt TJ, Paulus UA, Gasteiger HA, Alonso-Vante N, Behm RJ. Oxygen reduction on Ru1.92Mo0.08SeO4, Ru/Carbon, and Pt/Carbon in pure and methanol-containing electrolytes. J Electrochem Soc 2000;147:2620–4.

    Article  Google Scholar 

  66. Duron S, Rivera-Noriega R, Leyva MA, Nkeng P, Poillerat G, Solorza-Feria O. Oxygen reduction on a RuxSy(CO)n cluster electrocatalyst in 0.5 M H2SO4. J Solid State Electrochem 2000;4:70–4.

    Google Scholar 

  67. Gonzalez-Huerrta RG, Chavez-Carvayar JA, Solorza-Feria O. Electrocatalysis of oxygen reduction on carbon supported Ru-based catalysts in a polymer electrolyte fuel cell. J Power Sources 2006;153:11–17.

    Article  Google Scholar 

  68. Gochi-Ponce Y, Alonso-Nunez G, Alonso-Vante N. Synthesis and electrochemical characterization of a novel chalcogenide electrocatalyst with an enhanced tolerance to methanol in the oxygen reduction reaction. Electrochem Commun 2006;8:1487–91.

    Article  Google Scholar 

  69. Lee K, Zhang L, Zhang J. Ternary non-noble metal chalcogenide (W-Co-Se) as electrocatalyst for oxygen reduction reaction. Electrochem Commun 2007;9:1704–8.

    Article  Google Scholar 

  70. Pohlmann L, Tributsch H. Self-organized electron transfer. Electrochim Acta 1997;42:2737–48.

    Article  Google Scholar 

  71. Tributsch H, Pohlmann L. Electron transfer: classical approaches and new frontiers. Science 1998;279:1891–5.

    Article  Google Scholar 

  72. Susac D, Sode A, Zhu L, Wong P, Teo M, Bizzotto D, et al. A methodology for investigating new nonprecious metal catalysts for PEM fuel cells. J Phys Chem B 2006;110:10762–70.

    Article  Google Scholar 

  73. Mazza F, Trassatti S. Tungsten, titanium, and tantalum carbides and titanium nitrides as electrodes in redox system. J Electrochem Soc 1963;110:847–9.

    Article  Google Scholar 

  74. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K. Stability and electrocatalytic activity for oxygen reduction in WC-Ta catalyst. Electrochim Acta 2004;49:3479–85.

    Article  Google Scholar 

  75. Meng H, Shen P. Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction. J Phys Chem B 2005;109:22705–9.

    Article  Google Scholar 

  76. Nie M, Shen P, Wu M, Wei Z, Meng H. A study of oxygen reduction on improved Pt-WC/C electrocatalysts. J Power Sources 2006;162:173–6.

    Article  Google Scholar 

  77. Gordon S, Hart EJ, Matheson MS, Rabani J, Thomas JK. Reaction constants of the hydrated electron. J Am Chem Soc 1963;85:1375–7.

    Article  Google Scholar 

  78. Sawyer DT, Sobkowiak A, Roberts Jr. JL. Electrochemistry for chemists. New York:Wiley, 1995; 358–402.

    Google Scholar 

  79. Maricle DL, Hodgson WG. Reduction of oxygen to superoxide anion in aprotic solvents. Anal Chem 1965;37:1562–5.

    Article  Google Scholar 

  80. Peover ME, White BS. Electrolytic reduction of oxygen in aprotic solvents: the superoxide ion. Electrochim Acta 1966;11:1061–7.

    Article  Google Scholar 

  81. Vsudevan D, Wendt H. Electroreduction of oxygen in aprotic media. J Electroanal Chem 1995;392:69–74.

    Article  Google Scholar 

  82. Saha MS, Ohsaka T. Electrode kinetics of the O2/O2-redox couple at Hg electrode in the presence of PVC in aprotic media. Electrochim Acta 2005;50:4746–51.

    Article  Google Scholar 

  83. Wu J, Che Y, Okeyoshi T, Okajima T, Matsumoto F, Tokuda K, et al. Hydrodynamic chronocoulometric determination of diffusion coefficients and concentrations of dioxygen in media containing quinoline, isopuinoline, and methyquinolines. Anal Chem 1999;71:4056–60.

    Article  Google Scholar 

  84. AlNashef IM, Leonard ML, Kittle MC, Matthews MA, Weidner JW. Electrochemical generation of superoxide in room temperature ionic liquids. Electrochem Solid-State Lett 2001;4:D16–18.

    Article  Google Scholar 

  85. AlNashef IM, Leonard ML, Matthews MA, Weidner JW. Superoxide electrochemistry in an ionic liquid. Ind Eng Chem Res 2002;41:4475–8.

    Article  Google Scholar 

  86. Zhang D, Okajima T, Matsumoto F, Ohsaka T. Electrochemical reduction of dioxygen in 1-n-alkyl-3-methylimidazolium tetrafluoroborate room temperature ionic liquids. J Electrochem Soc 2004;151:D31–7.

    Article  Google Scholar 

  87. Katayama Y, Onodera H, Yamagata M, Miura T. Electrochemical reduction of oxygen in some hydrophobic room temperature molten salt systems. J Electrochem Soc 2004;151:A59–63.

    Article  Google Scholar 

  88. Yang H, McCreery RL. Elucidation of the mechanism of dioxygen reduction on metal free carbon electrodes. J Electrochem Soc 2000;147:3420–8.

    Article  Google Scholar 

  89. Choi Y, Chjo K, Park S. Oxygen reduction at Co(II)2-disalophen modified carbon electrodes. J Electrochem Soc 1995;142:4107–12.

    Article  Google Scholar 

  90. Song C, Zhang L, Zhang J. Reversible one-electron electro-reduction of O2 to produce a stable superoxide catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. J Electroanal Chem 2006;587:293–8.

    Article  MathSciNet  Google Scholar 

  91. Chevalet J, Rouelle F. Electrogeneration and some properties of the superoxide ion in aqueous solutions. J Electroanal Chem Interf Electrochem 1972;39:201–16.

    Article  Google Scholar 

  92. Beyer W, von Sturm F. Polarographic reduction of oxygen in presence of phthalocyanine complex. Angew Chem 1972;84:154–5.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Song, C., Zhang, J. (2008). Electrocatalytic Oxygen Reduction Reaction. In: Zhang, J. (eds) PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer, London. https://doi.org/10.1007/978-1-84800-936-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-936-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-935-6

  • Online ISBN: 978-1-84800-936-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics