Skip to main content

High-temperature PEM Fuel Cell Catalysts and Catalyst Layers

  • Chapter
PEM Fuel Cell Electrocatalysts and Catalyst Layers

Abstract

Proton exchange membrane fuel cells (PEMFCs), including direct methanol fuel cells (DMFCs), are considered one of the most promising types of energy converting devices due to their low/zero pollution emission, high power density, and high energy conversion efficiency. However, commercialization faces several major technical challenges, the top three being high cost, unsatisfactory durability, and operational flexibility. The last several decades have witnessed great efforts to overcome these challenges. Operating a PEMFC at temperatures greater than 90 °C is one approach [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, et al. High temperature PEM fuel cells. J Power Sources 2006;160:872–91.

    Article  Google Scholar 

  2. Song C, Tang Y, Zhang J, Zhang J, Wang H, Shen J, et al. PEM fuel cell reaction kinetics in the temperature range of 23–120 °C. Electrochim Acta 2007;52:2552–61.

    Article  Google Scholar 

  3. Damjanovic A. Temperature dependence of symmetry factors and the significance of the experimental activation energies. J Electroanal Chem 1993;355:57–77.

    Article  Google Scholar 

  4. Dahr HP, Christner LG, Kush AK. Nature of CO adsorption during oxidation in relation to modeling for CO poisoning of a fuel cell anode. J Electrochem Soc 1987; and references therein 134:3021–6.

    Google Scholar 

  5. Dhar HP, Christner LG, Kush AK, Maru HC. Performance study of a fuel cell Pt/C anode in presence of CO and CO2, and calculation of adsorption parameters for CO poisoning. J Electrochem Soc 1986;133:1574–82.

    Article  Google Scholar 

  6. Vogel W, Lundquest J, Ross P, Stonehart P. Reaction pathways and poisons-II the rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO. Electrochim Acta 1975;20:79–93.

    Article  Google Scholar 

  7. Igarashi H, Fujino T, Watanabe M. Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide. J Electroanal Chem 391 1995;119–23.

    Article  Google Scholar 

  8. Li Q, He R, Gao J, Jensen JO, Bjerrum NJ. The CO poisoning effect in PEMFCs operational at temperatures up to 200 C. J Electrochem Soc 2003;150:A1599–605.

    Article  Google Scholar 

  9. Mahorta S, Datta R. Membrane supported non-volatile acidic electrolytes allow higher temperature operation of polymer electrolyte membrane fuel cells. J Electrochem Soc 1997;144:L23–6.

    Article  Google Scholar 

  10. Wang J, Wavinell RF, Wainright J, Litt M, Yu H. A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochim Acta 1996;41:193–7.

    Article  Google Scholar 

  11. Lakshmanan B, Huang W, Olmeijer D, Weidner JW. Polyetheretherketone membranes for elevated temperature PEMFCs. Electrochem Solid-State Lett 2003;6:A282–5.

    Article  Google Scholar 

  12. Zhang J, Tang Y, Li H, Song C, Xia Z, Wang H, et al. Effect of relative humidity on PEM fuel cell performance at elevated temperatures, available online. Electrochim Acta 2008.

    Google Scholar 

  13. Song C, Chua CJ, Tang Y, Zhang J, Zhang J, Li J, et al. Voltage jump during polarization of a PEM fuel cell operated at low relative humidities. Int J Hydrogen Energy 2008. Accepted.

    Google Scholar 

  14. Ise M, Kreuver KD, Maier J. Electroosmotic drag in polymer electrolyte membranes: an electrophoretic NMR study. Solid-State Ionics 1999;125:213–23.

    Article  Google Scholar 

  15. Ma Y, Hu J, Ma H, Yi B, Zhang H. Effect of water transport properties on a PEM fuel cell operating with dry hydrogen. Electrochim Acta 2006;51:6361–6.

    Article  Google Scholar 

  16. Shao Y, Yin G, Wang Z, Gao Y. Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 2007;167:235– 42.

    Article  Google Scholar 

  17. Hinatsu JT, Mizuhata M, Takenaka H. Water uptake of perfluorosulfonic acid membranes from liquid water and water vapour. J Electrochem Soc 1994;141:1493–8.

    Article  Google Scholar 

  18. Tang Y, Zhang J, Song C, Zhang J. Single PEMFC design and validation for hightemperature MEA testing and diagnosis up to 300 °C. Electrochem Solid-State Lett 2007;10:B142–6.

    Article  Google Scholar 

  19. Savadogo O. Emerging membranes for electrochemical systems Part II: high temperature composite membranes for polymer electrolyte fuel cell applications. J Power Sources 2004;127:135–61.

    Article  Google Scholar 

  20. Haile SM, Boysen DA, Chisholm CRI, Merle RB. Solid acids as fuel cell electrolytes. Nature 2001;410:910–13.

    Article  Google Scholar 

  21. Boysen DA, Uda T, Chisholm CRI, Haile SM. High-performance solid acid fuel cells through humidity stabilization. Science 2003;303:68–70.

    Article  Google Scholar 

  22. Uda T, Haile SM. Thin membrane solid acid fuel cell. Electrochem Solid-State Lett 2005;8:A245–6.

    Article  Google Scholar 

  23. Zhang J, Tang Y, Song C, Zhang J. Unpublished results.

    Google Scholar 

  24. Liu G, Zhang H, Zhai Y, Zhang Y, Xu D, Shao Z. Pt4ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H3PO4 doped PBI. Electrochem Commun 2007;9:135–41.

    Article  Google Scholar 

  25. Liu G, Zhang H, Zhong H, Hu J, Xu D, Shao Z. A novel sintering resistant and corrosion resistant Pt4ZrO2/C catalyst for high temperature PEMFCs. Electrochim Acta 2006;51:5710–14.

    Article  Google Scholar 

  26. Bi W, Fuller TF. Temperature effects on PEM fuel cells Pt/C catalyst degradation. J Electrochem Soc 2008;155:B215–21.

    Article  Google Scholar 

  27. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S. Surface area loss of supported platinum in polymer electrolyte fuel cells. 1993;140:2872–7.

    Google Scholar 

  28. Darling RM, Meyer JP. Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 2003;150:A1523–7.

    Article  Google Scholar 

  29. Omelas R, Stassi A, Modica E, Arico AS, Antonucci V. Accelerated degradation tests for Pt/C catalysts in sulphuric acid. ECS Transactions 2006;3:633–41.

    Article  Google Scholar 

  30. Wang X, Kumar R, Meyers D. Effect of voltage on platinum dissolution. Electrochem Solid-State Lett 2006;9:A225–7.

    Article  Google Scholar 

  31. Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, et al. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J Electrochem Soc 2005;152:A2256–71.

    Article  Google Scholar 

  32. Virkar AV, Zhou Y. Mechanism of catalyst degradation in proton exchange membrane fuel cells. J Electrochem Soc 2007;154:B540–7.

    Article  Google Scholar 

  33. Xie J, Wood DL III, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL. Durability of PEFCs at high relative humidity conditions. J Electrochem Soc 2005;152:A104–13.

    Article  Google Scholar 

  34. Xie J, Wood DL III, More KL, Atanassov P, Borup RL. Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J Electrochem Soc 2005;152:A1011–20.

    Article  Google Scholar 

  35. Bi W, Gray GE, Fuller TF. PEM fuel cell Pt/C dissolution and deposition in Nafion electrolyte. Electrochem Solid-State Lett 2007;10:B101–4.

    Article  Google Scholar 

  36. Debe MK, Schmoeckel AK, Verstrom GD, Atanasoski R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 2006;161:1002– 11.

    Article  Google Scholar 

  37. Paik CH, Saloka GS, Graham GW. Influence of cyclic operation on PEM fuel cell catalyst stability. Electrochem Solid-State Lett 2007;10:B39–42.

    Article  Google Scholar 

  38. Guilminot E, Corcella A, Chatenet M, Maillard F, Charlot F, Berthome G, et al. Membrane and active layer degradation upon PEMFC steady-state operation. J Electrochem Soc 2007;154:B1106–14.

    Article  Google Scholar 

  39. Merzougui B, Swathirajan S. Rotating disk electrode investigation of fuel cell catalyst degradation due to potential cycling in acid electrolyte. J Electrochem Soc 2006;153:A2220–6.

    Article  Google Scholar 

  40. Stevens DA, Hicks MT, Haugen GM, Dahn JR. Ex situ and in situ stability studies of PEMFC catalysts. J Electrochem Soc 2005;152:A2309–15.

    Article  Google Scholar 

  41. Aragane J, Urushibata H, Murahashi T. Effect of operational potential on performance decay rate in phosphoric acid fuel cell. J Appl Electrochem 1996;26:147–52.

    Article  Google Scholar 

  42. Aragane J, Murahashi T, Odaka T. Change of Pt distribution in the active components of phosphoric acid fuel cell. J Electrochem Soc 1988;135:844–50.

    Article  Google Scholar 

  43. Zhai Y, Zhang H, Xing D, Shao Z. The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test. J Power Sources 2007;164:126–33.

    Article  Google Scholar 

  44. Dicks AL. The role of carbon in fuel cells. J Power Sources 2006;156:128–41.

    Article  Google Scholar 

  45. Pyun SI, Ryu YG, Choi SH. Corrosion behaviour of platinum-catalyzed carbon in phosphoric acid solution. Carbon 1994;32:161–4.

    Article  Google Scholar 

  46. Yu X, Ye S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC, Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources 2007;172:145–54.

    Article  Google Scholar 

  47. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittelman CJ, et al. Two fuel cell cars in every garage? Interface 2005;14(3):24–35.

    Google Scholar 

  48. Kinoshita K, Bett J. Determination of carbon surface oxides on platinum-catalyzed carbon. Carbon 1974;12:525–33.

    Article  Google Scholar 

  49. Stevens DA, Dahn JR. Thermal degradation of the support in carbon supported platinum electrocatalysts for PEM fuel cells. Carbon 2005;43:179–88.

    Article  Google Scholar 

  50. Roen LM, Paik CH, Jarvi TD. Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem Solid-State Lett 2004;7:A19–22.

    Article  Google Scholar 

  51. Alderucci V, Pino L, Antonucci PL, Roh W, Cho J, Kim H, et al. XPS study of surface oxidation of carbon supported Pt catalysts. Mater Chem Phys 1995;41:9–14.

    Article  Google Scholar 

  52. Passalacqua E, Antotnucci PL, Vivaldi M, Patti A, Antonucci V, Giordano N, et al. The influence of Pt on the electrooxidation behaviour of carbon in phosphoric acid. Electrochim Acta 1992;37:2725–30.

    Article  Google Scholar 

  53. Willsau J, Heitbbaum J. The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes—A DEMS study. J Electroanal Chem 1984;161:93–101.

    Article  Google Scholar 

  54. Rewick RT, Wetrcek PR, Wiase H. Carbon gasification in the presence of metal catalysts. Fuel 1974;53:274–9.

    Article  Google Scholar 

  55. Kinoshita K, Bett J. Electrochemical oxidation of carbon black in concentrated phosphoric acid at 135 C. Carbon 1973;11:237–47.

    Article  Google Scholar 

  56. Kangasniemi KH, Condit DA, Jarvi TD. Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J Electrochem Soc 2004; 151:E125–32.

    Article  Google Scholar 

  57. King JM, McDonald B. Experience with 200 kW PC25 fuel cell power plant. In: Handbook of fuel cells – fundamentals, technology, and applications, volume 4. Vielstich W, Gasteiger H, editors. Chicester, UK: John Wiley & Sons, 2003: 832–43.

    Google Scholar 

  58. Kinoshita K, Bett J. Influence of electrochemical treatment in phosphoric acid on the wettability of carbon. Carbon 1975;13:405–9.

    Article  Google Scholar 

  59. Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis. Carbon 1998;36:159–75.

    Article  Google Scholar 

  60. Kinoshita K. Carbon: Electrochemical and physicochemical properties. New York: John Wiley & Sons, 1988.

    Google Scholar 

  61. Landsman DA, Luczak FJ. Catalyst studies and coating technologies. In: Handbook of fuel cells – fundamentals, technology, and applications, volume 4. Vielstich W, Gasteiger H, editors. Chicester, UK: John Wiley & Sons, 2003: 811–31.

    Google Scholar 

  62. Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan Y. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett 2004;4:345–8.

    Article  Google Scholar 

  63. Wang X, Waje M, Yan Y. CNT based electrodes with high efficiency for PEMFCs. Electrochem Solid-State Lett 2005;8:A42–4.

    Article  Google Scholar 

  64. Wang X, Li W, Chen Z, Waje M, Yan Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 2006;158:154–9.

    Article  Google Scholar 

  65. Shao Y, Yin G, Gao Y, Shi P. Durability study of Pt/C and Pt/CNTs catalysts under simulated PEMFC conditions. J Electrochem Soc 2006;153:A1093–7.

    Article  Google Scholar 

  66. Carmo M, Pagain VA, Rosolen JM, Gonzalez ER. Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes. J Power Sources 2005;142:169–76.

    Article  Google Scholar 

  67. Wang J, Swain GM. Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis. J Electrochem Soc 2003;150 E24–32.

    Article  Google Scholar 

  68. Wang J, Swain GM, Tachibana T, Kobashi K. Incorporation of Pt particles in boron doped diamond thin films applications in electrocatalysis. Electrochem Solid-State Lett 2000;3:286–9.

    Article  Google Scholar 

  69. Wang Y, Lin Y, Viswanathan V, Liu J, Zhang C, Campbell S, et al. Development of alternative and durable high performance cathode supports for PEM fuel cells. 2007 DOE presentations, Washington DC, 2007.

    Google Scholar 

  70. Vedrine C, Dufaux M, Naccache C, Imelik B. X-ray photoelectron spectroscopy study of Pd and Pt ions in type Y-zeolite. Electron transfer between metal aggregates and the support as evidenced by X-ray photoelectron spectroscopy and electron spin resonance. J Chem Soc Faraday Trans 1978;74:440–50.

    Google Scholar 

  71. Bagotzky VS, Skundin AM. Electrocatalysts on supports—I. Electrochemical and adsorptive properties of platinum microdeposits on inert supports. Electrochim Acta 1984;29:757–65.

    Article  Google Scholar 

  72. Halla SC, Subramaniana V, Teeterb G, Rambabu B. Influence of metal–support interaction in Pt/C on CO and methanol oxidation reactions. Solid-State Ionics 2004;175:809–13.

    Article  Google Scholar 

  73. Shim J, -Lee CR, -Lee HK, -Lee JS, Cairns EJ. Electrochemical characteristics of Pt– WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J Power Sources 2001;102:172–7.

    Article  Google Scholar 

  74. Xiong L, Manthiram A. Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel cells. Electrochim Acta 2004;49:4163–70.

    Article  Google Scholar 

  75. Chen J, Sarma LS, Chen C, Cheng M, Shih S, Wang G, et al. Multi-scale dispersion in fuel cell anode catalysts: Role of TiO2 towards achieving nanostructured materials. J Power Sources 2006;159:29–33.

    Article  Google Scholar 

  76. Bezerraa CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, et al. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sources 2007;173:891–908.

    Article  Google Scholar 

  77. Stonehart P. Carbon substrates for phosphoric acid fuel cell cathodes. Carbon 1984;22:423–31.

    Article  Google Scholar 

  78. Uchida M, Aoyama Y, Tanabe M, Yanagihara N, Eda N, Ohta A. Influences of both carbon supports and heat-treatment of supported catalysts on electrochemical oxidation of methanol. J Electrochem Soc 1995;142:2572–6.

    Article  Google Scholar 

  79. Coloma F, Sepblveda-Escribano A, Rodriguez-Reinoso F. Heat-treated carbon-blacks as supports for platinum catalysts. J Catal 1995;154:299–305.

    Article  Google Scholar 

  80. Wang J, Savinell RF, Wainright J, Litt M, Yu H. A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochim Acta 1996;41:193–7.

    Article  Google Scholar 

  81. Li Q, Hjuler HA, Bjerrum NJ. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes. Electrochim Acta 2000;45:4219– 26.

    Article  Google Scholar 

  82. Li Q, Hjuler HA, Bjerrum NJ. Phosphoric acid doped polybenzimidazole membranes: Physicochemical characterization and fuel cell applications. J Appl Electrochem 2001;31:773–9.

    Article  Google Scholar 

  83. Lobato J, Rodrigo MA, Linares JJ, Scott K. Effect of the catalyst ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells. J Power Sources 2006;157:284–92.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Song, C., Hui, S., Zhang, J. (2008). High-temperature PEM Fuel Cell Catalysts and Catalyst Layers. In: Zhang, J. (eds) PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer, London. https://doi.org/10.1007/978-1-84800-936-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-936-3_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-935-6

  • Online ISBN: 978-1-84800-936-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics