Skip to main content

Physical Characterization of Electrocatalysts

  • Chapter
PEM Fuel Cell Electrocatalysts and Catalyst Layers

Abstract

In recent years, fuel cells have attracted considerable attention due to their high energy efficiency with zero emissions [1]. Electrocatalysts are some of the key materials used in low-temperature fuel cells such as the polymer electrolyte membrane fuel cell (PEMFC) and the direct methanol fuel cell (DMFC). Creating high-performance catalysts is widely recognized as a key step for the further development and commercialization of low-temperature fuel cells.

The physical characterization of electrocatalysts is very important for several areas of research: (1) preparing new types of electrocatalysts with high activity and high selectivity, (2) recognizing electrocatalyst structures, and (3) investigating the mechanisms of catalysts and certain additives.

Electrocatalysts for application in low-temperature fuel cells (including PEMFCs and DMFCs) constitute a special type of heterogeneous catalyst. The most important difference between an electrocatalyst and a normal heterogeneous catalyst is that the former should have good conductivity, whereas most typical heterogeneous catalysts are insulators; therefore, most characterization techniques for electrocatalysts are the same as for regular heterogeneous catalysts, but some special techniques are required for electrocatalysts because of their conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rastler D. Challenges for fuel cells as stationary power resource in the evolving energy enterprise. J Power Sources 2000;86:34–9.

    Article  Google Scholar 

  2. Toda T, Igarashi H, Uchida H, Watanabe M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 1999;146:3750–6.

    Article  Google Scholar 

  3. Li BT, Maruyama K, Nurunnabi M, Kunimori K, Tomishige K. Temperature profiles of alumina-supported noble metal catalysts in autothermal reforming of methane. Appl Catal A General 2004;275:157–72.

    Article  Google Scholar 

  4. Hu Z, Wakasugi T, Maeda A, Kunimori K, Soma M, Uchijima T. A comparison of niobia- and vanadia-supported Rh catalysts: The behavior of RhMO4 (M=Nb, V) on SiO2 during calcinations and reduction treatments. J Catal 1991;127:276–86.

    Article  Google Scholar 

  5. Ito S, Chibana C, Nagashima K, Kameoka S, Tomishige K, Kunimori K. CO hydrogenation over RhVO4/SiO2, Rh/V2O3 and Rh/SiO2 catalysts: reduction and regeneration of RhVO4. Appl Catal A General 2002;236:113–20.

    Article  Google Scholar 

  6. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996;272:1924–5.

    Article  Google Scholar 

  7. Liu ZL, Gan LM, Hong L, Chen WX, Lee JY. Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J Power Sources 2005;139:73–8.

    Article  Google Scholar 

  8. Colon-Mercado HR, Kim H, Popov BN. Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells. Electrochem Comm 2004;6:795–9.

    Article  Google Scholar 

  9. Salgado JRC, Antolini E, Gonzalez ER. Carbon supported Pt-Co alloys as methanolresistant oxygen-reduction electrocatalysts for direct methanol fuel cells. Appl Catal B Environmental 2005;57(4):283–90.

    Article  Google Scholar 

  10. Shukla AK, Raman RK, Choudhury NA, Prolkar KR, Sarode PR, Emura S, et al. Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells. J Electroanal Chem 2004;563:181–90.

    Article  Google Scholar 

  11. Chai GS, Yoon SB, Yu JS, Choi JH, Sung YE. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. J Phys Chem B 2004;108:7074–9.

    Article  Google Scholar 

  12. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001;412:169–72.

    Article  Google Scholar 

  13. Liu ZL, Hong L, Tham MP, Lim TH, Jiang HX. Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 2006;161:831–5.

    Article  Google Scholar 

  14. Jiang JH, Kucernak A. Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid. J Electroanal Chem 2002;520:64–70.

    Article  Google Scholar 

  15. Park S, Xie Y, Weaver MJ. Electrocatalytic pathways on carbon-supported platinum nanoparticles: Comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir 2002;18:5792–8.

    Article  Google Scholar 

  16. Lovic JD, Tripkovic AV, Gojkovic SLJ, Popovic KD, Tripkovic DV, Olszewski P, et al. Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. J Electroanal Chem 2005;581:294–302.

    Article  Google Scholar 

  17. Schmidt TJ, Noeske M, Gasteiger HA, Behm RJ, Britz P, Brijoux W, et al. Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements. Langmuir 1997;13:2591–5.

    Article  Google Scholar 

  18. Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces. Phys Chem Chem Phys 2003;5:4242–51.

    Article  Google Scholar 

  19. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 1995;142:1409–22.

    Article  Google Scholar 

  20. Salgado JRC, Antolini E, Gonzalez ER. Pt-Co/C electrocatalysts for oxygen reduction in H2/O2 PEMFCs synthesized by borohydride J Electrochem Soc 2004;151:A2143–9.

    Article  Google Scholar 

  21. Salgado JRC, Antolini E, Gonzalez ER. Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction. J Phys Chem B 2004;108:17767–74.

    Article  Google Scholar 

  22. Salgado JRC, Antolini E, Gonzalez RE. Preparation of Pt-Co/C electrocatalysts by reduction with borohydride in acid and alkaline media: the effect on the performance of the catalyst J. Power Sources 2004;138:56–60.

    Article  Google Scholar 

  23. Jiang LH, Sun GQ, Sun SG, Liu JG, Tang SH, Li HQ, et al. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation. Electrochim Acta 2005;50:5384–9.

    Article  Google Scholar 

  24. Antolini E, Salgado JRC, Giz MJ, Gonzalez ER. Effects of geometric and electronic factors on ORR activity of carbon supported Pt-Co electrocatalysts in PEM fuel cells. Int J Hydrogen Energy 2005;30:1213–20.

    Article  Google Scholar 

  25. Lopes T, Antolini E, Colmati F, Gonzalez ER. Carbon supported Pt-Co (3:1) alloy as improved cathode electrocatalyst for direct ethanol fuel cells. J Power Sources 2007;164:111–4.

    Article  Google Scholar 

  26. Wang ZB, Yin GP, Shi PF. The influence of acidic and alkaline precursors on Pt Ru/C catalyst performance for a direct methanol fuel cell. J Power Sources 2007;163:688–94.

    Article  Google Scholar 

  27. Lee J, Han S, Hyeon T. Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J Mater Chem 2004;14:478–86.

    Article  Google Scholar 

  28. Fuertes AB. A low-cost synthetic route to mesoporous carbons with narrow pore size distributions and tunable porosity through silica xerogel templates. Chem Mater 2004;16:449–55.

    Article  Google Scholar 

  29. Kim T, Park S, Ryoo R. Synthetic route to ordered mesoporous carbon materials with graphitic pore walls. Angew Chem Int Ed 2003;42:4375–9.

    Article  Google Scholar 

  30. Kim CH, Lee DK, Pinnavaia TJ. Graphitic mesostructured carbon prepared from aromatic precursors. Langmuir 2004;20:5157–9.

    Article  Google Scholar 

  31. Fuertes AB, Alvarez S. Graphitic mesoporous carbons synthesized through mesostructured silica templates. Carbon 2004;42:3049–55.

    Article  Google Scholar 

  32. Xia Y, Mokaya R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method. Adv Mater 2004;16:1553–8.

    Article  Google Scholar 

  33. Joo SH, Pak C, You DJ, Lee SA, Lee HI, Kim JM, et al. Ordered mesoporous carbons (OMC) as supports of electrocatalysts for direct methanol fuel cells (DMFC): effect of carbon precursors of OMC on DMFC performances. Electrochim Acta 2006;52:1618–26.

    Article  Google Scholar 

  34. Joo JB, Kim P, Kim W, Yi J. Preparation of Pt supported on mesoporous carbons for the reduction of oxygen in polymer electrolyte membrane fuel cell (PEMFC). J Electroceram 2006;17:713–8.

    Article  Google Scholar 

  35. Sevilla M, Fuertes AB. Catalytic graphitization of templated mesoporous carbons. Carbon 2006;44:468–74.

    Article  Google Scholar 

  36. Kongkanand A, Vinodgopal K, Kuwabata S, Kamat PV. Highly dispersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation. J Phys Chem 2006;110:16185–8.

    Google Scholar 

  37. Yang RZ, Qiu XP, Zhang HR, Li JQ, Zhu WT, Wang ZX, et al. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon 2005;43:11–6.

    Article  Google Scholar 

  38. Bessel CA, Laubernds K, Rodriguez NM, Baker RTK. Graphite nanofibers as an electrode for fuel cell applications. J Phys Chem B 2001;105:1115–8.

    Article  Google Scholar 

  39. Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y, et al. Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B 2002;323:124–6.

    Article  Google Scholar 

  40. Li WZ, Liang CH, Zhou WJ, Qiu JS, Li HQ, Sun GQ, et al. Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon 2004;42:436–9.

    Article  Google Scholar 

  41. Che GL, Lakshmi BB, Fisher ER, Martin CR. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998;393:346–9.

    Article  Google Scholar 

  42. Rajesh B, Thampi R, Bonard JM, Xanthopoulos N, Mathieu HJ, Viswanathan B. Carbon nanotubes generated from template carbonization of polyphenyl acetylene as the support for electrooxidation of methanol. J Phys Chem B 2003;107:2701–8.

    Article  Google Scholar 

  43. Yen CH, Cui XL, Pan HB, Wang SF, Llin YH, Wan CM. Deposition of platinum nanoparticles on carbon nanotubes by supercritical fluid method. J Nanosci Nanotechno 2005;5:1852–7.

    Article  Google Scholar 

  44. Chien CC, Jeng KT. Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts. Mater Chem Phys 2006;99:80–7.

    Article  Google Scholar 

  45. Li WZ, Liang CH, Zhou WJ, Qiu JS, Zhou ZH, Sun GQ, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 2003;107:6292–9.

    Article  Google Scholar 

  46. Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, et al. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun 2004;7:840–1.

    Article  Google Scholar 

  47. Girishkumar G, Vinodgopal K, Kamat PV. Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J Phys Chem B 2004;108:19960–6.

    Article  Google Scholar 

  48. Gennett T, Landi BJ, Elich JM, Jones KM, Alleman JL, Lamarre P, et al. Fuel cell applications of nanotube-metal supported catalysts. Solid State Ionics 2002 Symposium; 2002 Dec 2–5; Boston. Mater Res Soc Symposium Proceedings 2003;756:379–84.

    Google Scholar 

  49. Li XG, Hsing IM. The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotubes. Electrochim Acta 2006;51:5250–8.

    Article  Google Scholar 

  50. Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM. Improved charge transfer at carbon nanotube electrodes. Adv Mater 1999;11:154–7.

    Article  Google Scholar 

  51. Jeng KT, Chien CC, Hsu NY, Yen SC, Chiou SD, Lin SH, et al. Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition. J Power Sources 2006;160:97–104.

    Article  Google Scholar 

  52. ETH Zurich [homepage on the Internet]. Zurich, Switzerland: ETH Zurich c2008 [updated 2007 Aug 29]. Electron diffraction – examples. Available from: http://www.microscopy.ethz.ch/ TEM_ED_examples.htm.

    Google Scholar 

  53. Wikipedia. [updated 2008 Feb 26]. X-ray fluorescence. Available from: http://en.wikipedia.org /wiki/X-ray_fluorescence.

    Google Scholar 

  54. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc 1938;60:309–19.

    Article  Google Scholar 

  55. Watanabe M, Makita K, Usami H, Motoo S. New preparation method of a high performance gas diffusion electrode working at 100% utilization of catalyst clusters and analysis of the reaction layer. J Electroanal Chem 1986;197:195–208.

    Article  Google Scholar 

  56. Watanabe M, Tomikawa M, Motoo S. Experimental analysis of the reaction layer structure in a gas diffusion. J Electroanal Chem 1985;195:81–93.

    Article  Google Scholar 

  57. Stevens DA, Dahn JR. Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells. J Electrochem Soc 2003;150:A770–5.

    Article  Google Scholar 

  58. Savinell RF, Zeller RL, Adams JA. Electrochemically active surface area. J Electrochem Soc 1990;137:489–94.

    Article  Google Scholar 

  59. Yu JR, Yi BL, Han M, Cheng XL, Shao ZG, Zhang JX. High performance proton exchange membrane fuel cells. Electrochem 1999;5:448–54.

    Google Scholar 

  60. Hou JB, Yu HM, Zhang SS, Sun SC, Wang HW, Yi BL, et al. Analysis of PEMFC freeze degradation at –20 degrees °C after gas purging. J Power Sources 2006;162:513–20.

    Article  Google Scholar 

  61. Xu HF, Liang YX, Du KQ, Han M, Yi BL. Electrode kinetics of oxygen reduction at Pt/Nafion interfaces. J Dalian Raiway Institute 1998;19:97–100.

    Google Scholar 

  62. Ticianelli EA, Derouin CR, Srinivasan S. Localization of platinum in low catalyst loading electrodes to attain high power densities in PEM fuel cell. J Electroanal Chem 1988;251:275–85.

    Article  Google Scholar 

  63. Gottesfeld A, Zawodzinski TA. In: Alkire RC, Gerischer H, Kolb DM, Tobias CW, editors. Advances in electrochemical science and engineering, vol. 5 Weinheim:Wiley, 1997;195–301.

    Chapter  Google Scholar 

  64. Prater KB. Polymer electrolyte fuel cells: a review of recent developments. J Power Sources 1994;51:129–44.

    Article  Google Scholar 

  65. Kordesch K, Simander G. Fuel cells and their applications. Weinheim: Wiley-VCH, 1996;73.

    Google Scholar 

  66. Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L. Influence of the structure in low-Pt loading electrodes for polymer electrolyte cells. Electrochim Acta 1998;43:3665–73.

    Article  Google Scholar 

  67. Oetjen HF, Schmidt VM, Stimming U, Trila F. Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas. J Electrochem Soc 1996;143:3838–42.

    Article  Google Scholar 

  68. Khan MR, Lin SD. Using Pt sols to prepare low Pt-loading electrodes for polymer electrolyte fuel cells. J Power Sources 2006;162:186–91.

    Article  Google Scholar 

  69. Sasikumar G, Ihm JW, Ryu H. Dependence of optimum Nafion content in catalyst layer on platinum loading. J Power Sources 2004;132:11–7.

    Article  Google Scholar 

  70. Antolini E, Giorgi L, Pozio A, Passalacqua E. Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC. J Power Sources 1999;77:136–42.

    Article  Google Scholar 

  71. Loffler MS, Gross B, Natter H, Hempelmann R, Krajewski T, Divisek J. Synthesis and characterization of catalyst layers for direct methanol fuel cell applications Phys Chem Chem Phys 2001;3:333–6.

    Article  Google Scholar 

  72. Pozio A, Silva RF, De Francesco M, Cardellini F, Giorgi L. A novel route to prepare stable Pt-Ru/C electrocatalysts for polymer electrolyte fuel cell. Electrochim Acta 2002;48:255–62.

    Article  Google Scholar 

  73. Cai YF, Liu JM, Liao SJ. Preparation, characterization and electrocatalytic properties of promoted PtMoSi/C catalysts. Acta Phys-Chim Sin 2007;23:92–7.

    Article  Google Scholar 

  74. Tian ZQ, Jiang SP, Liang YM, Shen PK. Synthesis and characterization of platinum catalysts on muldwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 2006;110:5343–50.

    Article  Google Scholar 

  75. Xie FY, Tian ZQ, Meng H, Shen PK. Increasing the three-phase boundary by a novel three-dimensional electrode. J Power Sources 2005;141:211–5.

    Article  Google Scholar 

  76. Perez J, Gonzalez ER, Ticianelli EA. Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochim Acta 1998;44:1329–39.

    Article  Google Scholar 

  77. Pozio A, De Francesco M , Cemmi A, Cardellini F, Giorgi L. Comparison of high surface Pt/C catalysts by cyclic voltammetry. J Power Sources 2002;105:13–9.

    Article  Google Scholar 

  78. Schuth F. Endo- and exotemplating to create high-surface-area inorganic materials. Angwe Chem Int Ed 2003;42:3604–22.

    Article  Google Scholar 

  79. Yang HF, Zhao DY. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem 2005;15:1217–31.

    Google Scholar 

  80. Zhou HS, Zhu SM, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater 2003;15:2107–11.

    Article  Google Scholar 

  81. Hartmann M, Vinu A, Chandrasekar G. Adsorption of vitamin E on mesoporous carbon molecular sieves. Chem Mater 2005;17:829–33.

    Article  Google Scholar 

  82. Su FB, Zeng JH, Bao XY, Yu YS, Lee JY, Zhao XS. Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem Mater 2005;17:3960–7.

    Article  Google Scholar 

  83. Stevens DA, Dahn JR. Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 2005;43:179–88.

    Article  Google Scholar 

  84. Travitsky N, Ripenbein T, Golodnitsky D, Rosenberg Y, Burshtein L, Peled E. Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells. J Power Sources 2006;161:782–9.

    Article  Google Scholar 

  85. Knoll M, Ruska E. Das Elektronenmikroskop. (The electron microscope.) Z Physik 1932;78:318–39.

    Article  Google Scholar 

  86. Gurau B, Viswanathan R, Liu RX, Lafrenz TJ, Ley KL, Smotkin ES, et al. Structural and electrochemical characterization of binary, ternary and quaternary platinum alloy catalysts for methanol electro-oxidation. J Phys Chem B 1998;102:9997–10003.

    Article  Google Scholar 

  87. Bonnemann H, Brinkmann R, Britz P, Endruschat U, Mortel R, Paulus UA. Nanoscopic Pt-bimetal colloids as precursors for PEM fuel cell catalysts. J New Mater Electr Sys 2000;3:199–206.

    Google Scholar 

  88. Paulus UA, Endruschat U, Feldmeyer GJ, Schmidt TJ, Bonnemann H, Behm RJ. New PtRu alloy colloids as precursors for fuel cell catalystc. J Catal 2000;195:383–93.

    Article  Google Scholar 

  89. Boxall DL, Deluga GA, Kenik EA, King WD, Lukehart CM. Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: a DMFC anode catalyst of high relative performance. Chem Mater 2001;13:891–90.

    Article  Google Scholar 

  90. Deivaraj TC, Chen WX, Lee JY. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. J Mater Chem 2003;13:2555–60.

    Article  Google Scholar 

  91. Zhang X, Chan KY. Microemulsion synthesis and electrocatalytic properties of platinum-cobalt nanoparticles. J Mater Chem 2002;12:1203–6.

    Article  MathSciNet  Google Scholar 

  92. Rojas S, Garcia-Garcia FJ, Jaras S, Martinez-Huerta MV, Fierro JLG, Boutonnet M. Preparation of carbon supported Pt and PtRu nanoparticles from microemulsion: electrocatalysts for fuel cell applications. Appl Catal A 2005;285:24–35.

    Article  Google Scholar 

  93. Zhang X, Chan KY. Water-in-oil microemulsion synthesis of platinum ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem Mater 2003;15:451–9.

    Article  Google Scholar 

  94. Hills CW, Nashner MS, Frenkel AI, Shapley JR, Nuzzo RG. Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors. Langmuir 1999;15:690–70.

    Article  Google Scholar 

  95. Steigerwalt ES, Deluga GA, Lukehart CM. Rapid preparation of Pt-Ru/graphitic carbon nanofiber nanocomposites as DMFC anode catalysts using microwave processing. J Nanosci Nanotechno 2003;3:247–51.

    Article  Google Scholar 

  96. Steigerwalt ES, Deluga GA, Cliffel DE, Lukehart CM. A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. J Phys Chem B 2001;105:8097–101.

    Article  Google Scholar 

  97. Steigerwalt ES, Deluga GA, Lukehart CM. Pt-Ru/carbon fiber nanocomposites: Synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance. J Phys Chem B 2002;106:760–6.

    Article  Google Scholar 

  98. Nashner MS, Frenkel AI, Somerville D, Hills CS, Shapley JR, Nuzzo RG. Core shell inversion during nucleation and growth of bimetallic Pt/Ru nanoparticles. J Am Chem Soc 1998;120:8093–101.

    Article  Google Scholar 

  99. Nashner MS, Frenkel AI, Adler DL, Shapley JR, Nuzzo RG. Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)(16). J Am Chem Soc 1997;119:7760–71.

    Article  Google Scholar 

  100. Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J Electroanal Chem 1999;460:258–62.

    Article  Google Scholar 

  101. Li WZ, Zhou WJ, LI HQ, Zhou ZH, Zhou B, Sun GQ. Nano-structured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim Acta 2004;49:1045–55.

    Article  Google Scholar 

  102. Mustain WE, Kepler K, Prakash J. CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochim Acta 2007;52:2102–8.

    Article  Google Scholar 

  103. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007;315:493–7.

    Article  Google Scholar 

  104. Lima FHB, Lizcano-Valbuena WH, Teixeira-Neto E, Nart FC, Gonzalez ER, Ticianelli EA. Pt-Co/C nanoparticles as electrocatalysts for oxygen reduction in H2SO4 and H2SO4/CH3OH electrolytes. Electrochim Acta 2006;52:385–93.

    Article  Google Scholar 

  105. Ioroi T, Yasuda K. Platinum-iridium alloys as oxygen reduction electrocatalysts for polymer electrolyte fuel cells. J Electrochem Soc 2005;152:A1917–24.

    Article  Google Scholar 

  106. Shukla AK, Neergat M, Bera P, Jayaram V, Hegde MS. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells. J Electroanal Chem 2001;504:111–9.

    Article  Google Scholar 

  107. Arico AS, Shukla AK, Kim H, Park S, Min M, Antonucci V. An APS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl Surf Sci 2001;172:33–40.

    Article  Google Scholar 

  108. Neergat M, Shukla, AK, Gandhi KS. Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells. J Appl Electrochem 2001;31:373–8.

    Article  Google Scholar 

  109. Wasmus S, Kuver A. Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 1999;461:14–31.

    Article  Google Scholar 

  110. Kordesch K, Simader G. Fuel cells and their applications. Weinheim:VCH, 1996.

    Google Scholar 

  111. Gasteiger HA, Markovic NM, Ross PN Jr. H2 and CO electrooxidation on wellcharacterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects J Phys Chem 1995;99:8290–301.

    Article  Google Scholar 

  112. Yang H, Vogel W, Lamy C, Alonso-Vante N. Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J Phys Chem B 2004;108:11024–34.

    Article  Google Scholar 

  113. Liu ZL, Lee JY, Chen WX, Han M, Gan LM. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir 2004;20:181–7.

    Article  Google Scholar 

  114. Deivaraj TC, Lee JY. Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study. J Power Sources 2005;142:43–9.

    Article  Google Scholar 

  115. Li WZ, Liang CH, Zhou WJ, Qiu JS, Zhou ZH, Sun GQ. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 2003;107:6292–9.

    Article  Google Scholar 

  116. Hyeon T, Han S, Sung YE, Park KW, Kim YW. High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. Angew Chem Int Ed 2003;42:4352–6.

    Article  Google Scholar 

  117. Liu ZL, Lin XH, Lee JY, Zhang W, Han M, Gan LM. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 2002;18:4054–60.

    Article  Google Scholar 

  118. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL. Chemical detection with a single-walled carbon nanotube capacitor. Science 2005;307:1942–5.

    Article  Google Scholar 

  119. Hertel T, Martel R, Avouris P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J Phys Chem B 1998;102:910–5.

    Article  Google Scholar 

  120. Wong SS, Harper JD, Lansbery PL, Lieber CM. Carbon nanotube tips: High-resolution probes for imaging biological systems. J Am Chem Soc 1998;120:603–4.

    Article  Google Scholar 

  121. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997;386:377–9.

    Article  Google Scholar 

  122. Rajalakshmi N, Dhathathreyan KS, Govindaraj A, Satishkumar BC. Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage. Electrochim Acta 2000;45:4511–5.

    Article  Google Scholar 

  123. Rajalakshmi N, Ryu H, Shaijumon MM, Ramaprabhu S. Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material. J Power Sources 2005;140:250–7.

    Article  Google Scholar 

  124. Koga K, Gao GT, Tanaka H, Zeng XC. Formation of ordered ice nanotubes inside carbon nanotubes. NATURE 2001;412:802–5.

    Article  Google Scholar 

  125. Hynek S, Fuller W, Bentley J. Hydrogen storage by carbon sorption. Int J Hydrogen Energy 1997;22:601–10.

    Article  Google Scholar 

  126. Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS. Decoration of activated carbon nanotubes with copper and nickel. Carbon 2000;38:363–72.

    Article  Google Scholar 

  127. Che GL, Lakshmi BB, Martin CR, Fisher ER. Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 1999;15:750–8.

    Article  Google Scholar 

  128. Rajesh B, Thampi KR, Bonard JM, Viswanathan B. Preparation of a Pt-Ru bimetallic system supported on carbon nanotubes. J Mater Chem 2000;10:1757–9.

    Article  Google Scholar 

  129. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001;412:169–72.

    Article  Google Scholar 

  130. Windawi H, Ho FFL. Applied electron spectroscopy for chemical analysis. New York: John Wiley & Sons, 1982.

    Google Scholar 

  131. Mehta V, Cooper JS. Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 2003;114:32–53.

    Article  Google Scholar 

  132. Ralph TR, Hogarth MP. Catalysis for low temperature fuel cells Part I: the cathode challenges. Platinum Metals Rev 2002;46:3–14.

    Google Scholar 

  133. Prabhuram J, Zhao TS, Wong CW, Guo JW. Synthesis and physical/electrochemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells. J Power Sources 2004;134:1–6.

    Article  Google Scholar 

  134. Yang B, Lu Q, Wang Y, Zhuang L, Lu J, Liu P. Simple and low-cost preparation method for highly dispersed PtRu/C catalysts. Chem Mater 2003;15:3552–7.

    Article  Google Scholar 

  135. Tian Z, Jiang S, Liang Y, Shen P. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 2006;110:5343–50.

    Article  Google Scholar 

  136. Strmcnik D, Gaberscek M, Hocevar S, Jamnik J. The effect of halide ion impurities and Nafion on electrooxidation of CO on platinum. Solid State Ionics 2005;176:1759–63.

    Article  Google Scholar 

  137. Zhao X, Sun G, Jiang L, Chen W, Tang S, Zhou B, Xin Q. Effects of chloride anion as a potential fuel impurity on DMFC performance. Electrochem Solid-State Lett 2005;8:A149–51.

    Article  Google Scholar 

  138. Toda T, Igarashi H, Uccida H, Watanabe M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 1999;146:3750–6.

    Article  Google Scholar 

  139. Jaksic MM, Hypo-hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions. Int J Hydrogen Energy 2001;26:559–78.

    Article  Google Scholar 

  140. Antolini E, Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater Chem Phys 2003;78:563–73.

    Article  Google Scholar 

  141. Slavcheva E, Nikolova V, Petkova T, Lefterova E, Dragieva I, Vitanov T, Budevski E. Electrocatalytic activity of Pt and PtCo deposited on Ebonex by BH reduction. Electrochim Acta 2005;50:5444–8.

    Article  Google Scholar 

  142. Seo A, Lee J, Han K, Kim H. Performance and stability of Pt-based ternary alloy catalysts for PEMFC. Electrochim Acta 2006;52:1603–11.

    Article  Google Scholar 

  143. Arico¡a, AS, Shuklab AK, Kimc H, Parkc S, Minc M, Antonucci V. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl Surf Sci 2001;172:33–40.

    Article  Google Scholar 

  144. Shukla AK, Neergat M, Bera P, Jayaram V, Hegde MS. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells. J Electroanal Chem 2001;504:111–9.

    Article  Google Scholar 

  145. Schmidt TJ, Noeske M, Gasteiger AH, Behm RJ, Britz P, Brijoux W, Bonnemann H. PtRu alloy colloids as precursors for fuel cell catalysts: a combined XPS, AFM, HRTEM, and RDE study. J Electrochem Soc 1998;145:925–31.

    Article  Google Scholar 

  146. Paulus UA, Endruschat U, Feldmeyer GJ, Schmidt TJ, Bonnemann H, Behm RJ. New PtRu alloy colloids as precursors for fuel cell catalysts. J Catal 2000;195:383–93.

    Article  Google Scholar 

  147. Zhou Z, Wang S, Zhou W, Wang G, Jiang L, Li W, Song S, Liu J, Sun G, Xin Q. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chem Commun 2003;394–5.

    Google Scholar 

  148. Chen WX, Lee JY, Liu Z. Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem Commun 2002;2588–9.

    Google Scholar 

  149. Yu R, Chen L, Liu Q, Lin J, Tan KL, Ng SC, Chan HSO, Xu GQ, Hor TSA. Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 1998;10:718–22.

    Article  Google Scholar 

  150. Tsang SC, Chen YK, Harris PJF. Green MLH. A simple chemical method of opening and filling carbon nanotubes. Nature 1994;372:159–62.

    Article  Google Scholar 

  151. Hwang KC. Efficient cleavage of carbon grathene layers by oxidants. J Chem Soc Chem Commun 1995;173–4.

    Google Scholar 

  152. Liu Z, Lin X, Lee J, Zhang W, Han M, Gan, L. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 2002;18:4054–60.

    Article  Google Scholar 

  153. Nieminen M, Sajavaara T, Rauhala E, Putkonen M, Niinisto L. Surface-controlled growth of LaAlO3 thin films by atomic layer epitaxy. J Mater Chem 2001;11:2340–5.

    Article  Google Scholar 

  154. Hatanpaa T, Vehkamaki M, Mutikainen I, Kansikas J, Ritala M, Leskela M. Synthesis and characterisation of cyclopentadienyl complexes of barium: precursors for atomic layer deposition of BaTiO3. Dalton Trans 2004;1181–8.

    Google Scholar 

  155. Shim JH, Chao C, Huang H, Prinz FB. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chem Mater 2007;19:3850–4.

    Article  Google Scholar 

  156. Bielawa H, Hinrichsen O, Birkner A, Muhler M. The ammonia-synthesis catalyst of the next generation: barium-promoted oxide-supported ruthenium. Angew Chem Int Ed 2001;40:1061–2.

    Article  Google Scholar 

  157. Forni L, Molinari D, Rossetti I, Pernicone N. Carbon-supported promoted Ru catalyst for ammonia synthesis. Appl Catal A 1999;185:269–75.

    Article  Google Scholar 

  158. Hansen TW, Hansen PL, Dahl S, Jacobsen CJH. Support effect and active sites on promoted ruthenium catalysts for ammonia synthesis. Catal Lett 2002;84:7–12.

    Article  Google Scholar 

  159. Guraya M, Sprenger S, Rarog-Pilecka W, Szmigiel D, Kowalczyk Z, Muhler M. The effect of promoters on the electronic structure of ruthenium catalysts supported on carbon. Appl Surf Sci 2004;238:77–81.

    Article  Google Scholar 

  160. Arico AS, Srinivasan R, Antonucci V. DMFCs: from fundamental aspects to technology development. Fuel Cells 2001;1:133–61.

    Article  Google Scholar 

  161. Watanabe M, Motoo S. Electroanalytical chemistry and interfacial electrochemistry. J Electroanal Chem 1975;60:267–77.

    Article  Google Scholar 

  162. Grgur BN, Zhuang G, Markovic NM, Ross PN. Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface. J Phys Chem B 1997;101:3910–3.

    Article  Google Scholar 

  163. Ishikawa Y, Liao MS, Cabrera CR. Energetics of H2O dissociation and COads + OHads reaction on a series of Pt-M mixed metal clusters: a relativistic density-functional study. Surf Sci 2002;513:98–110.

    Article  Google Scholar 

  164. Jiang Z, Huang W, Zhang Z, Zhao H, Tan D, Bao X. Multiple coordination of CO on molybdenum nanoparticles: evidence for intermediate Mox(CO)y species by XPS and UPS. J Phys Chem B 2006;110:26105–13.

    Article  Google Scholar 

  165. Nashner MS, Frenkel AI, Somerville D, Hills CW, Shapley JR, Nuzzo RG. Core shell inversion during nucleation and growth of bimetallic Pt/Ru nanoparticles. J Am Chem Soc 1998;120:8093–101.

    Article  Google Scholar 

  166. Pan C, Dassenoy F, Casanove MJ, Philippot K, Amiens C, Lecante P, Mosset A, Chaudret B. A new synthetic method toward bimetallic ruthenium platinum nanoparticles: composition induced structural changes. J Phys Chem B 1999;103:10098–101.

    Article  Google Scholar 

  167. Moore JT, Corn JD, Chu D, Jiang R, Boxall DL, Kenik EA, Lukehart CM. Synthesis and characterization of a Pt3Ru1/Vulcan carbon powder nanocomposite and reactivity as a methanol electrooxidation catalyst. Chem Mater 2003;15:3320–5.

    Article  Google Scholar 

  168. Boxall DL, Deluga GA, Kenik EA, King, WD, Lukehart CM. Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: a DMFC anode catalyst of high relative performance. Chem Mater 2001;13:891–900.

    Article  Google Scholar 

  169. Kim YM, Choi SH, Lee HC, Hong MZ, Kim K, Lee HI. Organic-inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs). Electrochim Acta 2004;49:4787–96.

    Article  Google Scholar 

  170. Woo MH, Kwon O, Choi SH, Hong MZ, Ha HW, Kim K. Zirconium phosphate sulfonated poly (fluorinated arylene ether)s composite membranes for PEMFCs at 100 –140 C. Electrochim Acta 2006;51:6051–9.

    Article  Google Scholar 

  171. Wilson MS, Garzon HG, Sickafus KE, Gottesfeld S. Surface area loss of supported platinum in polymer electrolyte fuel cells. J Electrochem Soc 1993;140:2872–7.

    Article  Google Scholar 

  172. St-Pierre J, Wilkinson DP, Knights S, Bos ML. Relationships between water management, contamination and lifetime degradation in PEFC. J New Mater Electrochem Syst 2000;3:99–106.

    Google Scholar 

  173. Stevens DA, Dahn JR. Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 2005;43:179–88.

    Article  Google Scholar 

  174. Baturina OA, Aubuchon SR, Wynne KJ. Thermal stability in air of Pt/C catalysts and PEM fuel cell catalyst layers. Chem Mater 2006;18:1498–504.

    Article  Google Scholar 

  175. Roen LM, Paik CH, Jarvi TD. Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem Solid-State Lett 2004;7:A19–22.

    Article  Google Scholar 

  176. Samms SR, Wasmus S, Savinell RF. Thermal stability of Nafion in simulated fuel cell environments. J Electrochem Soc 1996;143:1498–504.

    Article  Google Scholar 

  177. Hogarth M, Ralph T. Catalysis for low temperature fuel cell, Part III: challenges for direct methanol fuel cell. Platinum Met Rev 2002;46:146–64.

    Google Scholar 

  178. Wasmus S, Kuver A. Methanol oxidation and direct methanol fuel cells: a selective review. J. Elctroanal Chem 1999;461:14–31.

    Article  Google Scholar 

  179. McNicol BD, Rand D, Williams K. Direct methanol-air fuel cells for road transportation. J Power Sources 1999;83:15–31.

    Article  Google Scholar 

  180. Rolison DR. Catalytic nanoarchitectures: the importance of nothing and the unimportance of periodicity. Science 2003;299:1698–701.

    Article  Google Scholar 

  181. Long JW, Stroud RM, Swider-Lyons KE, Rolison DR. How to make electrocatalysts more active for direct methanol oxidation: avoid PtRu bimetallic alloys. J Phys Chem B 2000;104:9772–6.

    Article  Google Scholar 

  182. Rolison DR, Hagans P, Swider-Lyons KE, Long JW. Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 1999;15:774–9.

    Article  Google Scholar 

  183. Iwasita T. Electrocatalysis of methanol oxidation. Electrochim Acta 2002;47:3663–74.

    Article  Google Scholar 

  184. Thomas SC, Ren XM, Gettesfeld S. Influence of ionomer content in catalyst layers on direct methanol fuel cell performance. J Electrochem Soc 1999;146:4354–9.

    Article  Google Scholar 

  185. Ren X, Wilson M, Gottesfeld S. High performance direct methanol polymer electrolyte fuel cell. J Electrochem Soc 1996;143:L12–15.

    Article  Google Scholar 

  186. Yang B, Lu Q, Wang Y, Zhuang L, Lu J, Liu P. Simple and low-cost preparation method for highly dispersed PtRu/C catalysts. Chem Mater 2003;15:3552–7.

    Article  Google Scholar 

  187. Gubler L, Gürsel S, Scherer G. Radiation grafted membranes for polymer electrolyte fuel cells. Fuel Cells 2005;5:317–35.

    Article  Google Scholar 

  188. Savadogo O. Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 2004;127:135–61.

    Article  Google Scholar 

  189. Alberti G, Casciola M. Composite membranes for medium-temperature PEM fuel cells. Annual review of materials science 2003;33:129–54.

    Article  Google Scholar 

  190. Kerres, JA. Development of ionomer membranes for fuel cells. J Membr Sci 2001;185:3–27.

    Article  Google Scholar 

  191. Hickner, MA, Ghassemi H, Kim YS, Einsla R, McGrath J. Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 2004;104:4587–611.

    Article  Google Scholar 

  192. Kreuer, KD. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 2001;185:29–39.

    Article  Google Scholar 

  193. Kaliaguine S, Mikhailenko SD, Wang KP, Xing P, Robertson G, Guiver M. Properties of SPEEK-based PEMs for fuel cell application. Catal Today 2003;82:213–22.

    Article  Google Scholar 

  194. Robertson GP, Mikhailenko SD, Wang K, Xing P, Guiver MD, Kaliaguine S. Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication. J Membr Sci 2003;219:113–21.

    Article  Google Scholar 

  195. Luisa Di Vona M, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S. SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process. J Membr Sci 2007;296:156–61.

    Article  Google Scholar 

  196. Munk J, Christensen A. P, Hamnett A., Skou E. The electrochemical oxidation of methanol on platinum and platinum + ruthenium particulate electrodes studied by insitu FTIR spectroscopy and electrochemical mass spectrometry. J Electroanal Chemistry 1996;401:215–22.

    Article  Google Scholar 

  197. Zhang YJ, Maroto-Valiente A, Rodriguez-Ramos I, Xin Q, Guerrero-Ruiz A. Synthesis and characterization of carbon black supported Pt-Ru alloy as a model catalyst for fuel cells. Catalysis Today 2004;93:619–26.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Liao, S., Li, B., Li, Y. (2008). Physical Characterization of Electrocatalysts. In: Zhang, J. (eds) PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer, London. https://doi.org/10.1007/978-1-84800-936-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-936-3_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-935-6

  • Online ISBN: 978-1-84800-936-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics