Skip to main content

Abstract

A fuel cell is an electrochemical device that continuously and directly converts the chemical energy of externally supplied fuel and oxidant to electrical energy. Fuel cells are customarily classified according to the electrolyte employed. The five most common technologies are polymer electrolyte membrane fuel cells (PEM fuel cells or PEMFCs), alkaline fuel cells (AFCs), phosphoric acid fuel cells (PAFCs), molten carbonate fuel cells (MCFCs) and solid oxide fuel cells (SOFCs). However, the popularity of PEMFCs, a relatively new type of fuel cell, is rapidly outpacing that of the others.

Unlike most other types of fuel cells, PEMFCs use a quasi-solid electrolyte, which is based on a polymer backbone with side-chains possessing acid-based groups. The numerous advantages of this family of electrolytes make the PEM fuel cell particularly attractive for smaller-scale terrestrial applications such as transportation, home-based distributed power, and portable power applications. The distinguishing features of PEMFCs include relatively low-temperature (under 90 °C) operation, high power density, a compact system, and ease in handling liquid fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbir F. PEM fuel cells: theory and practice. New York: Elsevier Academic Press, 2005.

    Google Scholar 

  2. Smithsonian Institute [homepage on the Internet]. Washington, DC: National Museum of American History; c1990–2008 [updated 2004]. PEM fuel cells. Available from: http://americanhistory.si.edu/fuelcells/pem/pemmain.htm.

    Google Scholar 

  3. Wikipedia [updated 18 April 2008]. Proton exchange membrance fuel cells. Available from: http://en.wikipedia.org/wiki/Proton_exchange_membrane_fuel_cell.

    Google Scholar 

  4. Ballard Power Systems [homepage on the Internet]. Burnaby, Canada: Ballard Power Systems; c2008 [updated 2008]. Company history. Available from: http://www.ballard.com/About_Ballard/Corporate_Information/Company_History.htm

    Google Scholar 

  5. Tang Y, Zhang J, Song C, Liu H, Zhang J, Wang H, et al. Temperature-dependent performance and in situ AC impedance of high-temperature PEM fuel cells using the Nafion-112 membrane. J Electrochem Soc 2006;153(11): A2036–43.

    Article  Google Scholar 

  6. Martin J, Blanco M, Pazos-Knoop S, Gu E, Wang H, Vanderhoek T, et al. (National Research Council of Canada Institute for Fuel Cell Innovation). Controlled Technical Report. Vancouver (BC) Canada: NRC-IFCI; 2005. Report No.: IFCI-PEMFC-CTR-015.

    Google Scholar 

  7. Nguyen TV, Knobbe MW. A liquid water management strategy for PEM fuel cell stacks. J Power Sources 2003;114:70–79.

    Article  Google Scholar 

  8. Wilkinson D, Vanderleeden O. Handbook of Fuel Cells: Fundamentals, Technology and Applications Vol. 3. In: Vielstich W, Lamm A, Gasteriger HA, editors. Chicester, England: John Wiley and Sons, 2003; 315–36.

    Google Scholar 

  9. Mehta V, Cooper JS. Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 2003;114:32–53.

    Article  Google Scholar 

  10. EG&G Technical Services, Ltd. Fuel cell handbook. Morgantown, West Virginia: U.S. Department of Energy, 2004.

    Google Scholar 

  11. Pukrushpan JT, Stefanopoulou AG, Peng H. Control of fuel cell breathing. IEEE Control Systems Magazine 2004;24:30–46.

    Article  MathSciNet  Google Scholar 

  12. Panchenko A. Polymer electrolyte membrane degradation and oxygen reduction in fuel cells: an EPR and DFT investigation. Doctoral thesis, Institute für Phzsikalische Chemie der Universität, Stuttgart, 2004. Available from: http://elib.unistuttgart.de/opus/volltexte/2004/2088/pdf/Panchenko.pdf.

    Google Scholar 

  13. Kadirov MK, Bosnjakovic A, Schlick S. Membrane-derived fluorinated radicals detected by electron spin resonance in UV-irradiated Nafion and Dow ionomers: effect of counterions and H2O2. J Phys Chem B 2005;109:7664–766.

    Article  Google Scholar 

  14. LaConti AB, Hamdan M, McDonald RC. Mechanisms of chemical degradation. In. Handbook of fuel cells: fundamentals, technology, and applications, vol. 3. Vielstich W, Lamm A, Gasteiger H, editors. Chicester, England: John Wiley and Sons; 2003;647–62.

    Google Scholar 

  15. Hodgdon RB Jr, Enos JF, Aiken EJ. Sulfonated polymers of ,, trifluorostyrene, with applications to structures and cell. US Patent 3 341 366 1967.

    Google Scholar 

  16. Hodgdon RB Jr, Enos JF, Aiken EJ. Process of sulfonating poly-alpha, beta, betatrifluorostyrene. US Patent 3 442 825 1969.

    Google Scholar 

  17. D’Agostino VF, Lee JY, Cook EH. Trifluorostyrene sulfonic acid membranes. US Patent 4 012 303 1977.

    Google Scholar 

  18. Yu J, Yi B, Xing D, Liu F, Shao Z, Fu Y, Zhang H. Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells. Phys Chem Chem Phys 2003;5:611–5.

    Article  Google Scholar 

  19. Feldheim DL, Lawson DR, Martin CR. Influence of the sulfonate counteraction on the thermal stability of Nafion perfluorosulfonate membranes. J Polym Sci Part B: Polym Phys 1993;31:953–7.

    Article  Google Scholar 

  20. Patil YP, Seery TAP, Shaw MT, Parnas RS. In-situ water sensing in a Nafion membrane by fluorescence spectroscopy. Ind Eng Chem Res 2005;44:6141–7.

    Article  Google Scholar 

  21. Huang C, Tan KS, Lin J, Tan KL. XRD and XPS analysis of the degradation of the polymer electrolyte in H2–O2 fuel cell. Chem Phys Lett 2003;371:80–5.

    Article  Google Scholar 

  22. Hinds G. Performance and durability of PEM fuel cells: a review. Teddington, UK: National Physical Laboratory; 2004. NPL Report No.: DEPC-MPE 002.

    Google Scholar 

  23. Bauer B, Jones DJ, Rozière J, Tchicaya L, Alberti G, Casciola M, et al. Electrochemical characterization of sulfonated polyetherketone membranes. J New Mat Electrochem Systems 2000;3:93–8.

    Google Scholar 

  24. Colliera A, Wang H, Yuan XZ, Zhang J, Wilkinson DP. Degradation of polymer electrolyte membranes. Intern J Hydrogen Energy 2006;31:1838–54.

    Article  Google Scholar 

  25. Perahia, D. Structure and dynamics of thin ionomer films: a key to a stable fuel cell membrane. American Physical Society Meeting; 2000 March 20–24; Minneapolis, MN. Available from: http://flux.aps.org/meetings/YR00/MAR00/abs/S4010.html.

    Google Scholar 

  26. Larminie J, Dicks A. Fuel cell systems explained. Chicester, England: John Wiley and Sons, 2003.

    Google Scholar 

  27. Lee JH, Lalk TR. Modeling fuel cell stack systems. J Power Sources 1998;73:229–41.

    Article  Google Scholar 

  28. Bever D, Wagner N, VonBradke M. Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures. Intern J Hydrogen Energy 1998;23:57–63.

    Article  Google Scholar 

  29. Giorgi L, Antolini E, Pozio A, Passalacqua E. Infuence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim Acta 1998;43:3675–80.

    Article  Google Scholar 

  30. Ralph TR, Hards GA, Keating JE, Campbell SA, Wilkinson DP, Davis H, et al. Lowcost electrodes for proton exchange membrane fuel cells. J Electrochem Sci 1997;144:3845–57.

    Article  Google Scholar 

  31. Itescu, J. Polymer electrolyte fuel cells: the gas diffusion layer [monograph on the Internet]. Princeton Institute for the Science and Technology of Materials. Princeton, NJ: Princeton University; 2004. Available from: http://www.princeton.edu/ ~pccm/outreach/REU2004/REU-2004-Presentations/JOHANNAH%20ITESCU.pdf.

    Google Scholar 

  32. US Department of Energy [homepage on the Internet]. Parts of a fuel cell. Washington, DC: US Department of Energy; c2008 [last updated 2007 Jan 31]. Hydrogen, fuel cells and infrastructure technologies program. Available from: http://www.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_parts.html.

    Google Scholar 

  33. Williams MV, Begg E, Bonville L, Kunz HR, Fenton JM. Characterization of gas diffusion layers for PEMFC. J Electrochem Soc 2004;151:A1173–80.

    Article  Google Scholar 

  34. Yuan XZ, Wang HJ, Zhang JJ, Wilkinson D. Bipolar plates for PEM fuel cells – from materials to processing. J New Mat Electrochem Syst 2005;8:257–67.

    Google Scholar 

  35. Cooper JS. Design analysis of PEMFC bipolar plates considering stack manufacturing and environment impact. J Power Sources 2004;129:152–69.

    Article  Google Scholar 

  36. Davies DP, Adcock PL, Turpin M, Rowen SJ. Stainless steel as a bipolar plate material for solid polymer fuel cells. J Power Sources 2000;86:237–42.

    Article  Google Scholar 

  37. Busick D, Wilson M. Development of composite materials for PEFC bipolar plates. Mat Res Soc Symp Proc 2000;575:247–51.

    Google Scholar 

  38. Heinzel A, Mahlendorf F, Niemzig O, Kreuz C. Injection moulded low cost bipolar plates for PEM fuel cells. J Power Sources 2004;131:35–40.

    Article  Google Scholar 

  39. Borup RL, Vanderborgh NE. Design and testing criteria for bipolar plate materials for PEM fuel cell applications. Mat Res Soc Symp Proc 1995;393:151–5.

    Google Scholar 

  40. Jung UH, Jeong SU, Park KT, Lee HM, Chun K et al. Improvement of water management in air-breathing and air-blowing PEMFC at low temperature using hydrophilic silica nanoparticles. Intern J Hydrogen Energ. In press, 2007.

    Google Scholar 

  41. Li X, Sabir I, Park J. A flow channel design procedure for PEM fuel cells with effective water removal. J Power Sources 2007;163:933–42.

    Article  Google Scholar 

  42. Wu J, Yuan XZ, Wang H, Blanco M, Martin J, Wilkinson DP, et al. Durability of PEM fuel cells. Presented at: Hydrogen and Fuel Cells 2007 International Conference and Trade Show; 2007 Apr 29–May 3; Vancouver, Canada.

    Google Scholar 

  43. Healy J, Hayden C, Xie T, Olson K, Waldo R, Brundage M, et al. Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 2005;5:302–8.

    Article  Google Scholar 

  44. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP. Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 2004;127:127–34.

    Article  Google Scholar 

  45. Meeker WQ, Escobar LA. Statistical methods for reliability data. New York: John Wiley and Sons, 1998.

    MATH  Google Scholar 

  46. Nelson W. Accelerated testing: statistical models, test plans, and data analyses. New York: John Wiley and Sons, 1990.

    Google Scholar 

  47. Hicks M. Membrane and catalyst durability under accelerated testing. In: Conference Proceedings of Fuel Cell Durability: Stationary, Automotive, Portable; 2005 Dec 8–9; Washington, DC. Brookline, MA: Knowledge Press; 2005.

    Google Scholar 

  48. Bonneville Power Administration [homepage on the Internet]. Portland, OR: Bonneville Power Administration; c2008 [updated 2004 Apr 19]. PEM fuel cells. Available from: http://www.bpa.gov/energy/n/tech/fuel_cell/pem_fuel_cells.cfm.

    Google Scholar 

  49. Fueleconomy.gov [homepage on the Internet]. Washington, DC: US Environmental Protection Agency; c2008 [updated 2008 Apr 18]. How they work: fuel cell systems. Available from: http://www.fueleconomy.gov/feg/fcv_components.shtml#.

    Google Scholar 

  50. Millett S, Mahadevan K. Commercialization scenarios of polymer electrolyte membrane fuel cell applications for stationary power generation in the United States by the year 2015. J Power Sources 2005;150:187–91.

    Article  Google Scholar 

  51. BatteryUniversity.com [homepage on the Internet]. Richmond, Canada: Cadex Electronics Inc.; c2008 [updated 2006 Nov]. The miniature fuel cell. Available from: http://www.batteryuniversity.com/parttwo-52A.htm.

    Google Scholar 

  52. Wang B. Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 2005;152:1–15.

    Article  Google Scholar 

  53. Neyerlin KC, Gu W, Jorne J, Gasteiger HA. Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. J Electrochem Soc 2006;153:A1955–63.

    Article  Google Scholar 

  54. Ilevbare GO, Scully JR. Oxygen reduction reaction kinetics on chromate conversion coated Al-Cu, Al-Cu-Mg, and Al-Cu-Mn-Fe intermetallic compounds. J Electrochem Soc 2001;148:B196–207.

    Article  Google Scholar 

  55. Neyerlin KC, Gasteiger HA, Mittelsteadt CK, Jorne J, Gu W. Effect of relative humidity on oxygen reduction kinetics in a PEMFC. J Electrochem Soc 2005;152:A1073–108.

    Article  Google Scholar 

  56. Xu, Song Y, Kunz HR, Fenton JM. . Electrochem Soc 2005;152(9):A1828–36.

    Article  Google Scholar 

  57. Prakash J, Joachin H. Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution. Electrochim Acta 2000;45:2289–96.

    Article  Google Scholar 

  58. Otero R, Calleja F, García-Suárez VM, Hinarejos JJ, de la Figuera J, Ferrer J, et al. Tailoring surface electronic states via strain to control adsorption: O/Cu/Ru(0 0 0 1). Surf Sci 2004;550:65–72.

    Article  Google Scholar 

  59. Xu Y, Mavrikakis M. Adsorption and dissociation of O2 on gold surfaces: effect of steps and strain. J Phys Chem B 2003;107:9298–307.

    Article  Google Scholar 

  60. Stiehl JD, Kim TS, McClure SM, Mullins CB. Evidence for molecularly chemisorbed oxygen on TiO2 supported gold nanoclusters and Au(111). J Am Chem Soc 2004;126:1606–7.

    Article  Google Scholar 

  61. Fernández JL, Walsh DA, Bard AJ. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M–Co (M:Pd, Ag, Au). J Am Chem Soc 2005;127:357–365

    Article  Google Scholar 

  62. Shen Y, Bi L, Liu B, Dong S. Simple preparation method of Pd nanoparticles on an Au electrode and its catalysis for dioxygen reduction. New J Chem 2003;27:938–41.

    Article  Google Scholar 

  63. Lin Y, Cui X, Ye X. Electrocatalytic reactivity for oxygen reduction of palladiummodified carbon nanotubes synthesized in supercritical fluid. Electrochem Commun 2005;7:267–274

    Article  Google Scholar 

  64. Demarconnay L, Coutanceau C, Léger JM. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts: effect of the presence of methanol. Electrochim Acta 2004;49:4513–21.

    Article  Google Scholar 

  65. Ohno S, Yagyuu K, Nakatsuji K, Komori F. Dissociation preference of oxygen molecules on an inhomogeneously strained Cu(0 0 1) surface. Surf Sci 2004;554:183–92.

    Article  Google Scholar 

  66. Lescop B, Jay J-Ph, Fanjoux G. Reduction of oxygen pre-treated Ni(111) by H2 exposure: UPS and MIES studies compared with Monte Carlo simulations. Surf Sci 2004;548:83–94.

    Article  Google Scholar 

  67. Mentus SV. Oxygen reduction on anodically formed titanium dioxide. Electrochim Acta 2004;50:27–32.

    Article  Google Scholar 

  68. Limoges BR, Stanis RJ, Turner JA, Herring AM. Electrocatalyst materials for fuel cells based on the polyoxometalates [PMo(12 n)VnO40](3 + n) (n = 0–3). Electrochim Acta 2005;50:1169–79.

    Article  Google Scholar 

  69. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K. Stability and electrocatalytic activity for oxygen reduction in WC + Ta catalyst. Electrochim Acta 2004;49:3479–85.

    Article  Google Scholar 

  70. Hayashi M, Uemura H, Shimanoe K, Miura N, Yamazoe N. Reverse micelle assisted dispersion of lanthanum manganite on carbon support for oxygen reduction cathode. J Electrochem Soc 2004;151:A158–63.

    Article  Google Scholar 

  71. Yoshimoto S, Inukai J, Tada A, Abe T, Morimoto T, Osuka A, et al. Adlayer structure of and electrochemical O2 reduction on cobalt porphine-modified and cobalt octaethylporphyrinmodified Au(1 1 1) in HClO4. J Phys Chem B 2004;108:1948–54.

    Article  Google Scholar 

  72. Chang CJ, Loh ZH, Shi C, Anson FC, Nocera DG. Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic Pacman porphyrins. J Am Chem Soc 2004;126:10013–20.

    Article  Google Scholar 

  73. Shen Y, Liu J, Jiang J, Liu B, Dong S. Fabrication of a metallopoyphyrinpolyoxometalate hybrid film by a layer-by-layer method and its catalysis for hydrogen evolution and dioxygen reduction. J Phys Chem B 2003;107:9744–8.

    Article  Google Scholar 

  74. Araki K, Dovidauskas S, Winnischofer H, Alexiou ADP, Toma HE. A new highly efficient tetra-electronic catalyst based on a cobalt porphyrin bound to four 3-oxoruthenium acetate clusters. J Electroanal Chem 2001;498:152–60.

    Article  Google Scholar 

  75. Yoshimoto S, Tada A, Suto K, Itaya K. Adlayer structures and electrocatalytic activity for O2 of metallophthalocyanines on Au(1 1 1): in situ scanning tunnelling microscopy study. J Phys Chem B 2003;107:5836–43.

    Article  Google Scholar 

  76. Zhang CX, Liang HC, Kim E, Shearer J, Helton ME, Kim E, et al. Tuning copperdioxygen reactivity and exogenous substrate oxidations via alterations in ligand electronics. J Am Chem Soc 2003;125:634–5.

    Article  Google Scholar 

  77. Kieber-Emmons MT, Schenker R, Yap GPA, Brunold TC, Riordan CG. Spectroscopic elucidation of a peroxo Ni2(μ-O2) intermediate derived from a nickel(I) complex and dioxygen. Angew Chem Int Ed 2004;43:6716–18.

    Article  Google Scholar 

  78. Aboelella NW, Lewis EA, Reynolds AM, Brennessel WW, Cramer CJ, Tolman WB. Snapshots of dioxygen activation by copper: the structure of a 2002;1:1 Cu/O2 adduct and its use in syntheses of asymmetric bis(-oxo) complexes. J Am Chem Soc 124: 10660–1.

    Google Scholar 

  79. Wagner N, Schnurnberger W, Mueller B, Lang M. Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells. Electrochim Acta 1998;43:3785–93.

    Article  Google Scholar 

  80. Wendt H, Spinacé EV, Oliveira Neto A, Linardi M. Electrocatalysis and electrocatalysts for low temperature fuel cells: fundamentals, state of the art, research and development. Quím Nova 2005;28:1066–75.

    Article  Google Scholar 

  81. Santiago EI, Batista MS, Assaf EM, Ticianelli EA. Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC. J Electrochem Soc 2004; 151: A944–9.

    Article  Google Scholar 

  82. Papageorgopoulos DC, de Heer MP, Keijzer M, Pieterse JAZ, de Bruijn FA. Nonalloyed carbon-supported PtRu catalysts for PEMFC applications. J Electrochem Soc 2004; 151: A763–8.

    Article  Google Scholar 

  83. Lu G, Cooper JS, McGinn PJ. SECM characterization of Pt–Ru–WC and Pt–Ru–Co ternary thin film combinatorial libraries as anode electrocatalysts for PEMFC. J Power Sources 2006; 161: 106–14.

    Article  Google Scholar 

  84. Blum A, Duvdevani T, Philosoph M, Rudoy N, Peled E. Water-neutral micro directmethanol fuel cell (DMFC) for portable applications. J Power Sources 2003; 117: 22–5.

    Article  Google Scholar 

  85. Chang H, Kim JR, Cho JH, Kim HK, Choi KH. Materials and processes for small fuel cells. Solid State Ionics 2002; 148: 601–6.

    Article  Google Scholar 

  86. Rice C., Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T. Direct formic acid fuel cells. J Power Sources 2002; 111: 83–9.

    Article  Google Scholar 

  87. Rice C, Ha S, Masel RI, Wieckowski A. Catalysts for direct formic acid fuel cells. J Power Sources 2003; 115: 229–35.

    Article  Google Scholar 

  88. Ha S, Adams B, Masel RI. A miniature air breathing direct formic acid fuel cells. J Power Sources 2004; 128: 119–24.

    Article  Google Scholar 

  89. Zhu Y, Ha S, Masel RI. High power density direct formic acid fuel cells. J Power Sources 2004; 130: 8–14.

    Article  Google Scholar 

  90. Ha S, Larsen R, Zhu Y, Masel RI. Direct formic acid fuel cells with 600Acm 2 at 0.4V and 22 °C. Fuel Cells 2004; 4: 337–43.

    Article  Google Scholar 

  91. Qian W, Wilkinson DP, Shen J, Wang H, Zhang J. Architecture for portable direct liquid fuel cells. J Power Sources 2006; 154: 202–13.

    Article  Google Scholar 

  92. Parsons TV. The oxidation of small organic molecules: A survey of recent fuel cell related research. J Electroanal Chem 1988; 257: 9–45.

    Article  Google Scholar 

  93. Gupta SS, Datta J. Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension. J Power Sources 2005; 145: 124–32.

    Article  Google Scholar 

  94. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger JM. Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 2002; 105: 283–96.

    Article  Google Scholar 

  95. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 2004; 563: 81–9.

    Article  Google Scholar 

  96. Raicheva SN, Christov MV, Sokolova EI. Effect of the temperature on the electrochemical behaviour of aliphatic alcohols. Electrochim Acta 1981; 26: 1669–76.

    Article  Google Scholar 

  97. Ota K, Nakagawa Y, Takahashi M. Reaction products of anodic oxidation of methanol in sulfuric acid solution. J Electroanal Chem 1984; 179: 179–86.

    Article  Google Scholar 

  98. Andreadis G, Song S, Tsiakaras P. Direct ethanol fuel cell anode simulation model. J Power Sources 2006; 157: 657–65.

    Article  Google Scholar 

  99. Wang ZB, Yin GP, Zhang J, Sun YC, Shi PF. Investigation of ethanol electrooxidation on a Pt–Ru–Ni/C catalyst for a direct ethanol fuel cell. J Power Sources 2006; 160: 37–43.

    Article  Google Scholar 

  100. Lux KW, Cairns EJ. Lanthanide-platinum intermetallic compounds as anode electrocatalysts for direct ethanol PEM fuel cells. J Electrochem Soc 2006; 153: A1139–47.

    Article  Google Scholar 

  101. Lux KW, Cairns EJ. Lanthanide-platinum intermetallic compounds as anode electrocatalysts for direct ethanol PEM fuel cells. J Electrochem Soc 2006; 153: A1132–38.

    Article  Google Scholar 

  102. Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, et al. Bi- and tri-metallic Ptbased anode catalysts for direct ethanol fuel cells. J Power Sources 2004; 131: 217–23.

    Article  Google Scholar 

  103. Oliveira Neto A, Giz MJ, Perez J, Ticianelli EA, Gonzalez ER. The electro-oxidation of ethanol on Pt-Ru and Pt-Mo particles supported on high-surface-area carbon. J Electrochem Soc 2002; 149: A272–9.

    Article  Google Scholar 

  104. Colmati F, Antolini E, Gonalez ER. Ethanol oxidation on carbon supported Pt-Sn electrocatalysts prepared by reduction with formic acid. J Electrochem Soc 2007; 154: B39–47.

    Article  Google Scholar 

  105. Zhou WJ, Song SQ, Li WZ, Sun GQ, Xin Q, Kontou S, et al. Pt-based anode catalysts for direct ethanol fuel cells. Solid State Ionics 2004; 175: 797–803.

    Article  Google Scholar 

  106. Rousseau S, Coutanceau C, Lamy C, Léger JM. Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 2006; 158: 18–24.

    Article  Google Scholar 

  107. Song SQ, Zhou WJ, Zhou ZH, Jiang LH, Sun GQ, Q. Xin, et al. Direct ethanol PEM fuel cells: The case of platinum based anodes. Intern J Hydrogen Energy 2005; 30: 995–1001.

    Article  Google Scholar 

  108. Wang H, Jusys Z, Behm RJ. Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: A quantitative DEMS study. J Power Sources 2006; 154: 351–9.

    Article  Google Scholar 

  109. Gupta SS, Mahapatra SS, Datta J. A potential anode material for the direct alcohol fuel cell. J Power Sources 2004; 131: 169–74.

    Article  Google Scholar 

  110. Rhee YW, Ha S, Rice C, Masel RI. Crossover of formic acid through Nafion® membranes. J Power Sources 2003; 117:35–8.

    Article  Google Scholar 

  111. Lee J, Christoph J, Strasser P, Eiswirth M, Ertl G. Spatio-temporal interfacial potential patterns during the electrocatalyzed oxidation of formic acid on Bi-modified Pt. J Chem Phys 2001; 115: 1485–92.

    Article  Google Scholar 

  112. Becerik , Kadirgan F. Electr-oxidation of formic acid on highly dispersed platinum and perchlorate doped polypyrrole electrodes. J Electrochem Soc 2001; 148: D49–54.

    Article  Google Scholar 

  113. Zhao M, Rice C, Masel RI, Waszczuk P, Wieckowski A. Kinetic study of electrooxidation of formic acid on spontaneously-deposited Pt/Pd nanoparticles. J Electrochem Soc 2004; 151: A131–6.

    Article  Google Scholar 

  114. Larsen R, Masel RI. Kinetic study of CO tolerance during electeo-oxidation of formic acid on spontaneously deposited Pt/Pd and Pt/Ru nanoparticles. Electrochem Solid-State Lett 2004; 7: A148–50.

    Article  Google Scholar 

  115. Zhang L, Lu T, Bao J, Tang Y, Li C. Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell. Electrochem Commun 2006; 8: 1625–7.

    Article  Google Scholar 

  116. Zhang L, Tang Y, Bao J, Lu T, Li C. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell. J Power Sources 2006; 162: 177–9.

    Article  Google Scholar 

  117. Larsen R, Zakzeski J, Masel RI. Unexpected activity of palladium on vanadia catalysts for formic acid electro-oxidation. Electrochem Solid-State Lett 2005; 8: A291–3.

    Article  Google Scholar 

  118. Weber M, Wang JT, Wasmus S, Savinell RF. Formic acid oxidation in a polymer electrolyte fuel cell. J Electrochem Soc 1996; 143: L158–60.

    Article  Google Scholar 

  119. Pukrushpan JT, Stefanopoulou AG, Peng H. Control of Fuel Cell Power Systems: Principles, Modeling, Analysis, and Feedback Design. London Berlin Heidelberg New York Hong Kong Milan Paris Tokyo: Springer, 2004; 31–56.

    Google Scholar 

  120. Amphett JC, Baumert RM, Peppley RF, Roberge PR, Harris TJ. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. J Electrochem Soc 1995; 142: 9–15.

    Article  Google Scholar 

  121. Wroblowa H, Rao MLB, Damijanovic A, Bockris JO’M. Adsorption and kinetics at platinum electrodes in the presence of oxygen at zero net current. J Electroanal Chem 1967; 15: 139–50.

    Article  Google Scholar 

  122. Bockris JO’M, Srinivasan S. Fuel Cells: Their Electrochemistry. New York: McGraw-Hill, 1969.

    Google Scholar 

  123. Appleby AJ. Oxygen reduction on oxide-free platinum in 85% orthophosphoric acid: temperature and impurity dependence. J Electrochem Soc 1970; 117: 328–35.

    Article  Google Scholar 

  124. Hoare JP. Rest potentials in the platinum-oxygen-acid system. J Electrochem Soc 1962; 109: 858–65.

    Article  Google Scholar 

  125. Thacker R, Hoare JP. Sorption of oxygen from solution by noble metals: I. Bright platinum. J Electroanal Chem 1971; 30:1–14.

    Article  Google Scholar 

  126. Cooper KR, Ramani V, Fenton JM, Kunz HR. Experimental Methods and Data Analyses for Polymer Electrolyte Fuel Cells, Edition 1.2. Scribner, 2005.

    Google Scholar 

  127. Ramani V, Kunz HR, Fenton JM. Investigation of Nafion® /HPA composite membranes for high temperature/low relative humidity PEMFC operation. J Membr Sci 2004; 232: 31–44.

    Article  Google Scholar 

  128. Ramani V, Kunz HR, Fenton JM. Stabilized composite membranes and membrane electrode assemblies for elevated temperature/low relative humidity PEFC operation. J Power Sources 2005; 152: 182–8.

    Article  Google Scholar 

  129. Song Y, Fenton JM, Kunz HR, Bonville LJ, Williams MV. High-performance PEMFCs at elevated temperatures using Nafion 112 membranes. J Electrochem Soc 2005; 152: A539–44.

    Article  Google Scholar 

  130. Cleghorn S, Kolde J, Liu W. Handbook of Fuel Cells: Fundamentals, Technology and Applications (Vol. 3). In: Vielstich W, Gasteiger HA, Lamm A, editors. Chicester: John Wiley & Sons, 2003; 566–75.

    Google Scholar 

  131. Yu J, Matsuura T, Yoshikawa Y, Islam MN, Hori M. In situ analysis of performance degradation of a PEMFC under nonsaturated humidification. Electrochem Solid-State Lett 2005; 8: A156–8.

    Article  Google Scholar 

  132. Paganin VA, Sitta E, Iwasita T, Vielstich W. Methanol crossover effect on the cathode potential of a direct PEM fuel cell. J Appl Electrochem 2005; 35: 1239–43.

    Article  Google Scholar 

  133. Jiang R, Chu D. Comparative Studies of Methanol Crossover and Cell Performance for a DMFC. J Electrochem Soc 2004; 151: A69–76.

    Article  Google Scholar 

  134. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and applications (2nd edition). New York: John Wiley and Sons, 2001.

    Google Scholar 

  135. Vogel W, Lundquist J, Ross P, Stonehart P. Reaction pathways and poisons—II: The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO. Electrochim Acta 1975; 20: 79–93.

    Article  Google Scholar 

  136. Jiang J, Kucernak A. Investigations of fuel cell reactions at the composite microelectrodesolid polymer electrolyte interface. I. Hydrogen oxidation at the nanostructured PtNafion® membrane interface. J Electroanal Chem 2004; 567: 123–37.

    Article  Google Scholar 

  137. Markovic NM, Grgur BN, Ross PN. Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. J Phys Chem B 1997; 101: 5405–13.

    Article  Google Scholar 

  138. Parthasarathy A, Srinivasan S, Appleby AJ. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface-a microelectrode investigation. J Electrochem Soc 1992; 139: 2530–7.

    Article  Google Scholar 

  139. Appleby AJ, Baker BS. Oxygen reduction on platinum in trifluoromethane sulfuric acid. J Electrochem Soc 1978; 125: 404–6.

    Article  Google Scholar 

  140. Damjanovic A, Genshaw MA. Dependence of the kinetics of O2 dissolution at Pt on the conditions for adsorption of reaction intermediates. Electrochim Acta 1970; 15: 1281–3.

    Article  Google Scholar 

  141. Damjanovic A, Brusic V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim Acta 1967; 12: 615–28.

    Article  Google Scholar 

  142. Appleby AJ. Evolution and reduction of oxygen on oxidized platinum in 85% orthophosphoric acid. J Electroanal Chem 1970; 24: 97–117.

    Article  Google Scholar 

  143. Yeager E. Electrocatalysts for O2 reduction. Electrochim Acta 1984; 29: 1527–37.

    Article  Google Scholar 

  144. Clouser SJ, Huang JC, Yeager E. Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J Appl Electrochem 1993; 23: 597–605.

    Article  Google Scholar 

  145. Damjanovic A. Temperature dependence of symmetry factors and the significance of experimental activation energies. J Electroanal Chem 1993; 355: 57–7.

    Article  Google Scholar 

  146. Mello RMQ, Ticianelli EA. Kinetic study of the hydrogen oxidation reaction on platinum and Nafion ® covered platinum electrodes. Electrochim Acta 1997; 42: 1031–9.

    Article  Google Scholar 

  147. Bockris JO’M, Gochev A. Temperature dependence of the symmetry factor in electrode kinetics. J Electroanal Chem 1986; 214: 655–74.

    Article  Google Scholar 

  148. Ulstrup J. Temperature dependence of the transfer coefficient in electron and atom group transfer processes. Electrochim Acta 1984; 29: 1377–80.

    Article  Google Scholar 

  149. Giner J, Hunter C. The mechanism of operation of the Teflon-bonded gas diffusion electrode: a mathematical model. J Electrochem Soc 1969; 116: 1124–30.

    Article  Google Scholar 

  150. Springer TE, Raistrick ID. Electrical impedance of a pore wall for the floodedagglomerate model of porous gas-diffusion electrodes. J Electrochem Soc 1989; 136: 1594–603.

    Article  Google Scholar 

  151. Zhang J, Wang H, Wilkinson DP, Song D, Shen J, Liu Z. Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities. J Power Sources 2005; 147: 58–71.

    Article  Google Scholar 

  152. Nagerl K, Dietz H. Elektrochemisches verhalten anodisch hergestellter oxidschichten auf platin. Electrochim Acta 1961; 4: 1–11.

    Article  Google Scholar 

  153. Dietz H, Göhr H. Über den elektrochemischen aufbau und abbau von sauerstoff- und wasserstoff-belegungen auf platin in wässriger lösung. Electrochim Acta 1963; 8: 343–59.

    Article  Google Scholar 

  154. Damjanovic A, Bockris JO’M. The rate constants for oxygen dissolution on bare and oxide-covered platinum. Electrochim Acta 1966; 11: 376–7.

    Article  Google Scholar 

  155. Sawyer DT, Day RJ. Kinetics for oxygen reduction at platinum, palladium and silver electrodes. Electrochim Acta 1963; 8: 589–94.

    Article  Google Scholar 

  156. Li X. Principle of Fuel Cells. New York: Taylor and Francis, 2006.

    Google Scholar 

  157. Lim CY, Haas HR. A diagnostic method for an electrochemical fuel cell and fuel cell components. WO patent 2006029254, 2006.

    Google Scholar 

  158. Hirschenhofer JH, Stauffer DB, Engleman RR, Klett MG. Fuel Cell Handbook (4th edition). Reading PA: Parsons Corporation for U.S. Dept. of Energy, Office of Fossil Energy, Federal Energy Technology Center, 1998.

    Google Scholar 

  159. Ju H, Wang CY. Experimental validation of a PEM fuel cell model by current distribution data. J Electrochem Soc 2004; 151: A1954–60.

    Article  Google Scholar 

  160. Srinivasan S, Ticianelli EA, Derouin CR, Redondo A. Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes. J Power Sources 1988; 22: 359–75.

    Article  Google Scholar 

  161. Srinivasan S, Velew OA, Parthasarathy A, Manko DJ, Appleby AJ. High energy efficiency and high power density proton exchange membrane fuel cells – electrode kinetics and mass transport. J Power Sources 1991; 36: 299–320.

    Article  Google Scholar 

  162. Kim J, Lee SM, Srinivasan S. Modeling of proton exchange membrane fuel cell performance with an empirical equation. J Electrochem Soc 1995; 142: 2670–4.

    Article  Google Scholar 

  163. Bevers D, Wohr M, Yasuda K, Oguro K. Simulation of a polymer electrolyte fuel cell electrode. J Appl Electrochem 1997; 27: 1254–64.

    Article  Google Scholar 

  164. Lee JH, Lalk TR, Appleby AJ. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. J Power Sources 1998; 70: 258–68.

    Article  Google Scholar 

  165. Squadrito G, Maggio G, Passalacqua E, Lufrano F, Patti A. An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour. J Appl Electrochem 1999; 29: 1449–55.

    Article  Google Scholar 

  166. Pisani L, Murgia G, Valentini M, D’Agurnno B. A new semi-empirical approach to performance curves of polymer electrolyte fuel cells. J Power Sources 2002; 108: 192–203.

    Article  Google Scholar 

  167. Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Harris TJ. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. J Electrochem Soc 1995; 142: 1–8.

    Article  Google Scholar 

  168. Sena DR, Ticianelli EA, Paganin VA, Gonzalez ER. Effect of water transport in a PEFC at low temperatures operating with dry hydrogen. J Electroanal Chem 1999; 477: 164–70.

    Article  Google Scholar 

  169. Büchi FN, Marek A, Scherrer GG. In situ membrane resistance measurements in polymer electrolyte fuel cells by fast auxiliary current pulses. J Electrochem Soc 1995; 142: 1895–901.

    Article  Google Scholar 

  170. Mennola T, Mikkola M, Noponen M. Measurement of ohmic voltage losses in individual cells of a PEMFC stack. J Power Sources 2002; 112: 261–72.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Yuan, XZ., Wang, H. (2008). PEM Fuel Cell Fundamentals. In: Zhang, J. (eds) PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer, London. https://doi.org/10.1007/978-1-84800-936-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-936-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-935-6

  • Online ISBN: 978-1-84800-936-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics