Advertisement

High-Frequency Oscillatory Ventilation

  • Kathleen M. Ventre
  • John H. Arnold
Chapter

Keywords

Acute Lung Injury Congenital Diaphragmatic Hernia Electrical Impedance Tomography Congenital Diaphragmatic Hernia Conventional Mechanical Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lunkenheimer PP, Rafflenbeul W, Keller H, Frank I, Dickhut HH, Fuhrmann C. Application of transtracheal pressure oscillations as a modification of ‘‘diffusing respiration.’’ Br J Anaesth 1972;44(6): 627.Google Scholar
  2. 2.
    Lunkenheimer PP, Frank I, Ising H, Keller H, Dickhut HH. [Intrapulmonary gas exchange during simulated apnea due to transtracheal periodic intrathoracic pressure changes.] Anaesthesist 1973;22(5):232–238.PubMedGoogle Scholar
  3. 3.
    Butler WJ, Bohn DJ, Bryan AC, Froese AB. Ventilation by high-frequency oscillation in humans. Anesth Analg 1980;59(8):577–584.PubMedGoogle Scholar
  4. 4.
    Hernandez LA, Peevy KJ, Moise AA, Parker JC. Chest wall restriction limits high airway pressure–induced lung injury in young rabbits. J Appl Physiol 1989;66(5):2364–2368.PubMedGoogle Scholar
  5. 5.
    Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 1998;157(6 Pt 1):1721–1725.PubMedGoogle Scholar
  6. 6.
    Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999;282(1):54–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Doctor A, Arnold JH. Mechanical support of acute lung injury: options for strategic ventilation. New Horiz 1999;7(3):359–373.Google Scholar
  8. 8.
    McCulloch PR, Forkert PG, Froese AB. Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 1988;137(5):1185–1192.PubMedGoogle Scholar
  9. 9.
    Bond DM, Froese AB. Volume recruitment maneuvers are less deleterious than persistent low lung volumes in the atelectasis-prone rabbit lung during high-frequency oscillation. Crit Care Med 1993;21(3):402–412.PubMedCrossRefGoogle Scholar
  10. 10.
    Byford LJ, Finkler JH, Froese AB. Lung volume recruitment during high-frequency oscillation in atelectasis-prone rabbits. J Appl Physiol 1988;64(4):1607–1614.PubMedGoogle Scholar
  11. 11.
    Chu EK, Whitehead T, Slutsky AS. Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines. Crit Care Med 2004;32(1):168–174.PubMedCrossRefGoogle Scholar
  12. 12.
    Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 2004;32(9):1817–1824.PubMedCrossRefGoogle Scholar
  13. 13.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000;342(18):1301–1308.CrossRefGoogle Scholar
  14. 14.
    Priebe GP, Arnold JH. High-frequency oscillatory ventilation in pediatric patients. Respir Care Clin North Am 2001;7(4):633–645.CrossRefGoogle Scholar
  15. 15.
    Chang HK. Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol 1984;56(3):553–563.PubMedGoogle Scholar
  16. 16.
    Wetzel RC, Gioia FR. High frequency ventilation. Pediatr Clin North Am 1987;34(1):15–38.PubMedGoogle Scholar
  17. 17.
    Arnold JH. High-frequency ventilation in the pediatric intensive care unit. Pediatr Crit Care Med 2000;1(2):93–99.PubMedCrossRefGoogle Scholar
  18. 18.
    Boynton BR, Hammond MD, Fredberg JJ, Buckley BG, Villanueva D, Frantz ID, 3rd. Gas exchange in healthy rabbits during high-frequency oscillatory ventilation. J Appl Physiol 1989;66(3):1343–1351.PubMedGoogle Scholar
  19. 19.
    Hatcher D, Watanabe H, Ashbury T, Vincent S, Fisher J, Froese A. Mechanical performance of clinically available, neonatal, high-frequency, oscillatory-type ventilators. Crit Care Med 1998;26(6):1081–1088.PubMedCrossRefGoogle Scholar
  20. 20.
    Pillow JJ, Neil H, Wilkinson MH, Ramsden CA. Effect of I/E ratio on mean alveolar pressure during high-frequency oscillatory ventilation. J Appl Physiol 1999;87(1):407–414.PubMedGoogle Scholar
  21. 21.
    Kolton M, McGhee I, Bryan AC. Tidal volumes required to maintain isocapnia at frequencies from 3 to 30Hz in the dog. Anesth Analg 1987;66(6):523–528.PubMedCrossRefGoogle Scholar
  22. 22.
    Venegas JG, Fredberg JJ. Understanding the pressure cost of ventilation: why does high-frequency ventilation work? Crit Care Med 1994;22(9 Suppl): S49–S57.PubMedCrossRefGoogle Scholar
  23. 23.
    Gerstmann DR, Fouke JM, Winter DC, Taylor AF, deLemos RA. Proximal, tracheal, and alveolar pressures during high-frequency oscillatory ventilation in a normal rabbit model. Pediatr Res 1990;28(4):367–373.PubMedCrossRefGoogle Scholar
  24. 24.
    Allen JL, Frantz ID, 3rd, Fredberg JJ. Heterogeneity of mean alveolar pressure during high-frequency oscillations. J Appl Physiol 1987;62(1):223–228.PubMedGoogle Scholar
  25. 25.
    Allen JL, Fredberg JJ, Keefe DH, Frantz ID, 3rd. Alveolar pressure magnitude and asynchrony during high-frequency oscillations of excised rabbit lungs. Am Rev Respir Dis 1985;132(2):343–349.PubMedGoogle Scholar
  26. 26.
    Saari AF, Rossing TH, Solway J, Drazen JM. Lung inflation during high-frequency ventilation. Am Rev Respir Dis 1984;129(2):333–336.PubMedGoogle Scholar
  27. 27.
    Simon BA, Weinmann GG, Mitzner W. Mean airway pressure and alveolar pressure during high-frequency ventilation. J Appl Physiol 1984;57(4):1069–1078.PubMedGoogle Scholar
  28. 28.
    Bryan AC, Slutsky AS. Long volume during high frequency oscillation. Am Rev Respir Dis 1986;133(5):928–930.PubMedGoogle Scholar
  29. 29.
    West JB. Blood flow and metabolism. In: Respiratory Physiology: The Essentials, 4th ed. Baltimore: Williams & Wilkins; 1990:41.Google Scholar
  30. 30.
    Bryan AC, Cox PN. History of high frequency oscillation. Schweiz Med Wochenschr 1999;129(43):1613–1616.PubMedGoogle Scholar
  31. 31.
    VandeKieft M, Dorsey D, Venticinque S, Harris A. Effects of endotracheal tube (ETT) cuff leak on gas flow patterns in a mechanical lung model during high-frequency oscillatory ventilation (HFOV) [abstract A178]. Am J Respir Crit Care Med 2003:A178.Google Scholar
  32. 32.
    Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman TG, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med 2002;166(6):801–808.PubMedCrossRefGoogle Scholar
  33. 33.
    Mehta S, Lapinsky SE, Hallett DC, Merker D, Groll RJ, Cooper AB, et al. Prospective trial of high-frequency oscillation in adults with acute respiratory distress syndrome. Crit Care Med 2001;29(7):1360–1369.PubMedCrossRefGoogle Scholar
  34. 34.
    Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 1994;22(10):1530–1539.PubMedGoogle Scholar
  35. 35.
    Arnold JH, Truog RD, Thompson JE, Fackler JC. High-frequency oscillatory ventilation in pediatric respiratory failure. Crit Care Med 1993;21(2):272–278.PubMedCrossRefGoogle Scholar
  36. 36.
    Ellsbury DL, Klein JM, Segar JL. Optimization of high-frequency oscillatory ventilation for the treatment of experimental pneumothorax. Crit Care Med 2002;30(5):1131–1135.PubMedCrossRefGoogle Scholar
  37. 37.
    Meredith KS, deLemos RA, Coalson JJ, King RJ, Gerstmann DR, Kumar R, et al. Role of lung injury in the pathogenesis of hyaline membrane disease in premature baboons. J Appl Physiol 1989;66(5):2150–2158.PubMedGoogle Scholar
  38. 38.
    deLemos RA, Coalson JJ, deLemos JA, et al. High frequency oscillatory ventilation improves the non-uniform lung inflation of hyaline membrane disease [abstr]. Am Rev Respir Dis 1989;139:A438.Google Scholar
  39. 39.
    High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. The HIFI Study Group. N Engl J Med 1989;320(2):88–93.CrossRefGoogle Scholar
  40. 40.
    Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL, Shoemaker CT. High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med 2002;347(9):643–652.PubMedCrossRefGoogle Scholar
  41. 41.
    Johnson AH, Peacock JL, Greenough A, Marlow N, Limb ES, Marston L, et al. High-frequency oscillatory ventilation for the prevention of chronic lung disease of prematurity. N Engl J Med 2002;347(9):633–642.PubMedCrossRefGoogle Scholar
  42. 42.
    Clark RH, Gerstmann DR, Null DM Jr, deLemos RA. Prospective randomized comparison of high-frequency oscillatory and conventional ventilation in respiratory distress syndrome. Pediatrics 1992;89(1):5–12.PubMedGoogle Scholar
  43. 43.
    Ogawa Y, Miyasaka K, Kawano T, Imura S, Inukai K, Okuyama K, et al. A multicenter randomized trial of high frequency oscillatory ventilation as compared with conventional mechanical ventilation in preterm infants with respiratory failure. Early Hum Dev 1993;32(1):1–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Greenholz SK. Congenital diaphragmatic hernia: an overview. Semin Pediatr Surg 1996;5(4):216–223.PubMedGoogle Scholar
  45. 45.
    Azarow K, Messineo A, Pearl R, Filler R, Barker G, Bohn D. Congenital diaphragmatic hernia—a tale of two cities: the Toronto experience. J Pediatr Surg 1997;32(3):395–400.PubMedCrossRefGoogle Scholar
  46. 46.
    Sakurai Y, Azarow K, Cutz E, Messineo A, Pearl R, Bohn D. Pulmonary barotrauma in congenital diaphragmatic hernia: a clinicopathological correlation. J Pediatr Surg 1999;34(12):1813–1817.PubMedCrossRefGoogle Scholar
  47. 47.
    Reyes C, Chang LK, Waffarn F, Mir H, Warden MJ, Sills J. Delayed repair of congenital diaphragmatic hernia with early high-frequency oscillatory ventilation during preoperative stabilization. J Pediatr Surg 1998;33(7):1010–1016.PubMedCrossRefGoogle Scholar
  48. 48.
    Desfrere L, Jarreau PH, Dommergues M, Brunhes A, Hubert P, Nihoul-Fekete C, et al. Impact of delayed repair and elective high-frequency oscillatory ventilation on survival of antenatally diagnosed congenital diaphragmatic hernia: first application of these strategies in the more ‘‘severe’’ subgroup of antenatally diagnosed newborns. Intensive Care Med 2000;26(7):934–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Cacciari A, Ruggeri G, Mordenti M, Ceccarelli PL, Baccarini E, Pigna A, et al. High-frequency oscillatory ventilation versus conventional mechanical ventilation in congenital diaphragmatic hernia. Eur J Pediatr Surg 2001;11(1):3–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Wilson JM, Lund DP, Lillehei CW, Vacanti JP. Congenital diaphragmatic hernia—a tale of two cities: the Boston experience. J Pediatr Surg 1997;32(3):401–405.PubMedCrossRefGoogle Scholar
  51. 51.
    Kinsella JP, Truog WE, Walsh WF, Goldberg RN, Bancalari E, Mayock DE, et al. Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr 1997;131(1 Pt 1):55–62.PubMedGoogle Scholar
  52. 52.
    Dobyns EL, Anas NG, Fortenberry JD, Deshpande J, Cornfield DN, Tasker RC, et al. Interactive effects of high-frequency oscillatory ventilation and inhaled nitric oxide in acute hypoxemic respiratory failure in pediatrics. Crit Care Med 2002;30(11):2425–2429.PubMedCrossRefGoogle Scholar
  53. 53.
    Clark RH, Gerstmann DR, Null DM, Yoder BA, Cornish JD, Glasier CM, et al. Pulmonary interstitial emphysema treated by high-frequency oscillatory ventilation. Crit Care Med 1986;14(11):926–930.PubMedCrossRefGoogle Scholar
  54. 54.
    Medbo S, Finne PH, Hansen TW. Respiratory syncytial virus pneu-monia ventilated with high-frequency oscillatory ventilation. Acta Paediatr 1997;86(7):766–768.PubMedCrossRefGoogle Scholar
  55. 55.
    Duval EL, Leroy PL, Gemke RJ, van Vught AJ. High-frequency oscillatory ventilation in RSV bronchiolitis patients. Respir Med 1999;93(6): 435–440.PubMedCrossRefGoogle Scholar
  56. 56.
    Rosenberg RB, Broner CW, Peters KJ, Anglin DL. High-frequency ventilation for acute pediatric respiratory failure. Chest 1993;104(4):1216–1221.PubMedCrossRefGoogle Scholar
  57. 57.
    Gerstmann DR, Minton SD, Stoddard RA, Meredith KS, Monaco F, Bertrand JM, et al. The Provo multicenter early high-frequency oscillatory ventilation trial: improved pulmonary and clinical outcome in respiratory distress syndrome. Pediatrics 1996;98(6 Pt 1):1044–1057.PubMedGoogle Scholar
  58. 58.
    Jackson JC, Truog WE, Standaert TA, Juul SE, Murphy JH, Chi EY, et al. Effect of high-frequency ventilation on the development of alveolar edema in premature monkeys at risk for hyaline membrane disease. Am Rev Respir Dis 1991;143(4 Pt 1):865–871.PubMedGoogle Scholar
  59. 59.
    Duval EL, van Vught AJ. Status asthmaticus treated by high-frequency oscillatory ventilation. Pediatr Pulmonol 2000;30(4):350–353.PubMedCrossRefGoogle Scholar
  60. 60.
    Slutsky AS, Kamm RD, Rossing TH, Loring SH, Lehr J, Shapiro AH, et al. Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2–30Hz), low tidal volume ventilation. J Clin Invest 1981;68(6):1475–1484.PubMedCrossRefGoogle Scholar
  61. 61.
    Lunkenheimer PP, Redmann K, Stroh N, Gleich C, Krebs S, Scheld HH, et al. High-frequency oscillation in an adult porcine model. Crit Care Med 1994;22(9 Suppl):S37–S48.PubMedCrossRefGoogle Scholar
  62. 62.
    Fort P, Farmer C, Westerman J, Johannigman J, Beninati W, Dolan S, et al. High-frequency oscillatory ventilation for adult respiratory distress syndrome—a pilot study [comment]. Crit Care Med 1997;25(6):937–947.PubMedCrossRefGoogle Scholar
  63. 63.
    Sedeek KA, Takeuchi M, Suchodolski K, Kacmarek RM. Determinants of tidal volume during high-frequency oscillation. Crit Care Med 2003;31(1):227–231.PubMedCrossRefGoogle Scholar
  64. 64.
    Brazelton TB, 3rd, Watson KF, Murphy M, Al-Khadra E, Thompson JE, Arnold JH. Identification of optimal lung volume during high-frequency oscillatory ventilation using respiratory inductive plethysmography. Crit Care Med 2001;29(12):2349–2359.PubMedCrossRefGoogle Scholar
  65. 65.
    Weber K, Courtney SE, Pyon KH, Chang GY, Pandit PB, Habib RH. Detecting lung overdistention in newborns treated with high-frequency oscillatory ventilation. J Appl Physiol 2000;89(1):364–372.PubMedGoogle Scholar
  66. 66.
    Maggiore SM, Lellouche F, Pigeot J, Taille S, Deye N, Durrmeyer X, et al. Prevention of endotracheal suctioning-induced alveolar derecruitment in acute lung injury. Am J Respir Crit Care Med 2003;167(9):1215–1224.PubMedCrossRefGoogle Scholar
  67. 67.
    Choong K, Chatrkaw P, Frndova H, Cox PN. Comparison of loss in lung volume with open versus in-line catheter endotracheal suctioning. Pediatr Crit Care Med 2003;4(1):69–73.PubMedCrossRefGoogle Scholar
  68. 68.
    Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 2001;164(9):1701–1711.PubMedGoogle Scholar
  69. 69.
    Wolf GK, Arnold JH. Non-invasive assessment of lung volume: respiratory inductance plethysmography and electric impedance tomography. Yearbook of Intensive Care and Emergency Medicine, Springer-Verlag, Berlin, 2005;116–128.Google Scholar
  70. 70.
    Hedenstierna G. Using electric impedance tomography to assess regional ventilation at the bedside. Am J Respir Crit Care Med 2004;169(7):777–778.PubMedCrossRefGoogle Scholar
  71. 71.
    Blue RS, Isaacson D, Newell JC. Real-time three-dimensional electrical impedance imaging. Physiol Meas 2000;21(1):15–26.PubMedCrossRefGoogle Scholar
  72. 72.
    Hahn G, Thiel F, Dudykevych T, Frerichs I, Gersing E, Schroder T, et al. Quantitative evaluation of the performance of different electrical tomography devices. Biomed Tech (Berl) 2001;46(4):91–95.CrossRefGoogle Scholar
  73. 73.
    Kunst PW, de Vries PM, Postmus PE, Bakker J. Evaluation of electrical impedance tomography in the measurement of PEEP-induced changes in lung volume. Chest 1999;115(4):1102–1106.PubMedCrossRefGoogle Scholar
  74. 74.
    Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, et al. Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 2002;93(2):660–666.PubMedGoogle Scholar
  75. 75.
    van Genderingen HR, van Vught AJ, Jansen JR. Regional lung volume during high-frequency oscillatory ventilation by electrical impedance tomography. Crit Care Med 2004;32(3):787–794.PubMedCrossRefGoogle Scholar
  76. 76.
    Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 2004;169(7):791–800.PubMedCrossRefGoogle Scholar
  77. 77.
    Wolf GK, Arnold JH. Non-invasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 2005;33(supl):S163–S169.CrossRefGoogle Scholar
  78. 78.
    Kunst PW, Vonk Noordegraaf A, Hoekstra OS, Postmus PE, de Vries PM. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. Physiol Meas 1998;19(4):481–490.PubMedCrossRefGoogle Scholar
  79. 79.
    Kunst PW, Vonk Noordegraaf A, Straver B, Aarts RA, Tesselaar CD, Postmus PE, et al. Influences of lung parenchyma density and thoracic fluid on ventilatory EIT measurements. Physiol Meas 1998;19(1):27–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2009

Authors and Affiliations

  • Kathleen M. Ventre
    • 1
  • John H. Arnold
    • 2
  1. 1.Division of Critical Care Medicine Primary Children’s Medical CenterUniversity of Utah School School of MedicineSalt Lake CityUSA
  2. 2.Harvard Medical School Senior Associate in Anesthesiology, Critical Care Medical Director, Respiratory Care Children’s Hospital BostonBostonUSA

Personalised recommendations