Ventilator-Induced Lung Injury

  • Shinya Tsuchida
  • Brian P. Kavanagh


Lung Injury Tidal Volume Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998;338:347–354.PubMedCrossRefGoogle Scholar
  2. 2.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301–1308.CrossRefGoogle Scholar
  3. 3.
    Tobin MJ. Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med 2000;342:1360–1361.PubMedCrossRefGoogle Scholar
  4. 4.
    Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 2002;166:1510–1514.PubMedCrossRefGoogle Scholar
  5. 5.
    Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974;110:556–565.PubMedGoogle Scholar
  6. 6.
    Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988;137:1159–1164.PubMedGoogle Scholar
  7. 7.
    Broccard AF, Hotchkiss JR, Suzuki S, Olson D, Marini JJ. Effects of mean airway pressure and tidal excursion on lung injury induced by mechanical ventilation in an isolated perfused rabbit lung model. Crit Care Med 1999;27:1533–1541.PubMedCrossRefGoogle Scholar
  8. 8.
    Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 1999;160:109–116.PubMedGoogle Scholar
  9. 9.
    Duggan M, McCaul CL, McNamara PJ, Engelberts D, Ackerley C, Kavanagh BP. Atelectasis causes vascular leak and lethal right ventricular failure in uninjured rat lungs. Am J Respir Crit Care Med 2003; 167:1633–1640.PubMedCrossRefGoogle Scholar
  10. 10.
    Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med 2002;165:242–249.PubMedGoogle Scholar
  11. 11.
    Kavanagh BP, Slutsky AS. Ventilator-induced lung injury: more studies, more questions. Crit Care Med 1999;27:1669–1671.PubMedCrossRefGoogle Scholar
  12. 12.
    Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987;136:730–736.PubMedGoogle Scholar
  13. 13.
    Treggiari MM, Romand JA, Martin JB, Suter PM. Air cysts and bronchiectasis prevail in nondependent areas in severe acute respiratory distress syndrome: a computed tomographic study of ventilator-associated changes. Crit Care Med 2002;30:1747–1752.PubMedCrossRefGoogle Scholar
  14. 14.
    Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004;351:327–336.PubMedCrossRefGoogle Scholar
  15. 15.
    Pepe PE, Hudson LD, Carrico CJ. Early application of positive end-expiratory pressure in patients at risk for the adult respiratory-distress syndrome. N Engl J Med 1984;311:281–286.PubMedCrossRefGoogle Scholar
  16. 16.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994;149:1327–1334.PubMedGoogle Scholar
  17. 17.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997;99:944–952.PubMedCrossRefGoogle Scholar
  18. 18.
    Valenza F, Guglielmi M, Irace M, Porro GA, Sibilla S, Gattinoni L. Positive end-expiratory pressure delays the progression of lung injury during ventilator strategies involving high airway pressure and lung overdistention. Crit Care Med 2003;31:1993–1998.PubMedCrossRefGoogle Scholar
  19. 19.
    Sandhar BK, Niblett DJ, Argiras EP, Dunnill MS, Sykes MK. Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 1988;14:538–546.PubMedCrossRefGoogle Scholar
  20. 20.
    Sohma A, Brampton WJ, Dunnill MS, Sykes MK. Effect of ventilation with positive end-expiratory pressure on the development of lung damage in experimental acid aspiration pneumonia in the rabbit. Intensive Care Med 1992;18:112–117.PubMedCrossRefGoogle Scholar
  21. 21.
    Michna J, Jobe AH, Ikegami M. Positive end-expiratory pressure preserves surfactant function in preterm lambs. Am J Respir Crit Care Med 1999;160:634–639.PubMedGoogle Scholar
  22. 22.
    Naik AS, Kallapur SG, Bachurski CJ, et al. Effects of ventilation with different positive end-expiratory pressures on cytokine expression in the preterm lamb lung. Am J Respir Crit Care Med 2001;164:494–498.PubMedGoogle Scholar
  23. 23.
    Rimensberger PC, Pristine G, Mullen BM, Cox PN, Slutsky AS. Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Crit Care Med 1999;27:1940–1945.PubMedCrossRefGoogle Scholar
  24. 24.
    Lim CM, Soon Lee S, Seoung Lee J, et al. Morphometric effects of the recruitment maneuver on saline-lavaged canine lungs. A computed tomographic analysis. Anesthesiology 2003;99:71–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Musch G, Harris RS, Vidal Melo MF, et al. Mechanism by which a sustained inflation can worsen oxygenation in acute lung injury. Anesthesiology 2004;100:323–330.PubMedCrossRefGoogle Scholar
  26. 26.
    Brower RG, Morris A, MacIntyre N, et al. Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit Care Med 2003;31:2592–2597.PubMedCrossRefGoogle Scholar
  27. 27.
    Foti G, Cereda M, Sparacino ME, De Marchi L, Villa F, Pesenti A. Effects of periodic lung recruitment maneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients. Intensive Care Med 2000;26:501–507.PubMedCrossRefGoogle Scholar
  28. 28.
    Villagra A, Ochagavia A, Vatua S, et al. Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2002;165:165–170.PubMedGoogle Scholar
  29. 29.
    Grasso S, Mascia L, Del Turco M, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 2002;96:795–802.PubMedCrossRefGoogle Scholar
  30. 30.
    Adkins WK, Hernandez LA, Coker PJ, Buchanan B, Parker JC. Age effects susceptibility to pulmonary barotrauma in rabbits. Crit Care Med 1991;19:390–393.PubMedCrossRefGoogle Scholar
  31. 31.
    Gomes RF, Shardonofsky F, Eidelman DH, Bates JH. Respiratory mechanics and lung development in the rat from early age to adulthood. J Appl Physiol 2001;90:1631–1638.PubMedGoogle Scholar
  32. 32.
    Copland IB, Martinez F, Kavanagh BP, et al. High tidal volume ventilation causes different inflammatory responses in newborn versus adult lung. Am J Respir Crit Care Med 2004;169:739–748.PubMedCrossRefGoogle Scholar
  33. 33.
    Kornecki A, Tsuchida S, Ondiveeran HK, et al. Lung development and susceptibility to ventilator-induced lung injury. Am J Respir Crit Care Med 2005;171:743–752.PubMedCrossRefGoogle Scholar
  34. 34.
    Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282:54–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Takata M, Abe J, Tanaka H, et al. Intraalveolar expression of tumor necrosis factor-alpha gene during conventional and high-frequency ventilation. Am J Respir Crit Care Med 1997;156:272–279.PubMedGoogle Scholar
  36. 36.
    Imai Y, Nakagawa S, Ito Y, Kawano T, Slutsky AS, Miyasaka K. Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J Appl Physiol 2001;91:1836–1844.PubMedGoogle Scholar
  37. 37.
    Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 1998;157: 1721–1725.PubMedGoogle Scholar
  38. 38.
    Dreyfuss D, Ricard JD, Saumon G. On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med 2003;167:1467–1471.PubMedCrossRefGoogle Scholar
  39. 39.
    von Bethmann AN, Brasch F, Nusing R, et al. Hyperventilation induces release of cytokines from perfused mouse lung. Am J Respir Crit Care Med 1998;157:263–272.Google Scholar
  40. 40.
    Foda HD, Rollo EE, Drews M, et al. Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: attenuation by the synthetic matrix metalloproteinase inhibitor, Prinomastat (AG3340). Am J Respir Cell Mol Biol 2001;25:717–724.PubMedGoogle Scholar
  41. 41.
    Ricard JD, Dreyfuss D, Saumon G. Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 2001;163:1176–1180.PubMedGoogle Scholar
  42. 42.
    Verbrugge SJ, Uhlig S, Neggers SJ, et al. Different ventilation strategies affect lung function but do not increase tumor necrosis factor-alpha and prostacyclin production in lavaged rat lungs in vivo. Anesthesiology 1999;91:1834–1843.PubMedCrossRefGoogle Scholar
  43. 43.
    Imanaka H, Shimaoka M, Matsuura N, Nishimura M, Ohta N, Kiyono H. Ventilator-induced lung injury is associated with neutrophil infiltration, macrophage activation, and TGF-beta 1 mRNA upregulation in rat lungs. Anesth Analg 2001;92:428–436.PubMedCrossRefGoogle Scholar
  44. 44.
    Quinn DA, Moufarrej RK, Volokhov A, Hales CA. Interactions of lung stretch, hyperoxia, and MIP-2 production in ventilator-induced lung injury. J Appl Physiol 2002;93:517–525.PubMedGoogle Scholar
  45. 45.
    Wilson MR, Choudhury S, Goddard ME, O’Dea KP, Nicholson AG, Takata M. High tidal volume upregulates intrapulmonary cytokines in an in vivo mouse model of ventilator-induced lung injury. J Appl Physiol 2003;95:1385–1393.PubMedGoogle Scholar
  46. 46.
    Tremblay LN, Miatto D, Hamid Q, Govindarajan A, Slutsky AS. Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit Care Med 2002;30:1693–1700.PubMedCrossRefGoogle Scholar
  47. 47.
    Dugernier TL, Laterre PF, Wittebole X, et al. Compartmentalization of the inflammatory response during acute pancreatitis: correlation with local and systemic complications. Am J Respir Crit Care Med 2003;168:148–157.PubMedCrossRefGoogle Scholar
  48. 48.
    Held HD, Boettcher S, Hamann L, Uhlig S. Ventilation-induced chemokine and cytokine release is associated with activation of nuclear factor-kappaB and is blocked by steroids. Am J Respir Crit Care Med 2001;163:711–716.PubMedGoogle Scholar
  49. 49.
    Murphy DB, Cregg N, Tremblay L, et al. Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med 2000;162:27–33.PubMedGoogle Scholar
  50. 50.
    Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 1997;25:1733–1743.PubMedCrossRefGoogle Scholar
  51. 51.
    van Kaam AH, Lachmann RA, Herting E, et al. Reducing atelectasis attenuates bacterial growth and translocation in experimental pneumonia. Am J Respir Crit Care Med 2004;169:1046–1053.PubMedCrossRefGoogle Scholar
  52. 52.
    Imai Y, Parodo J, Kajikawa O, et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 2003;289:2104–2112.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2009

Authors and Affiliations

  • Shinya Tsuchida
    • 1
  • Brian P. Kavanagh
    • 2
  1. 1.Departments of Critical Care Medicine and AnesthesiaProgram in Lung Biology The Hospital for Sick Children University of TorontoTorontoCanada
  2. 2.Department of Critical Care MedicineAssociate Professor of Anesthesia and Medicine University of Toronto Director of ResearchTorontoCanada

Personalised recommendations