Skip to main content

Single-Ventricle Lesions

  • Chapter
  • First Online:
Book cover Cardiovascular Pediatric Critical Illness and Injury

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacobs ML, Rychik J, Murphy JD, Nicolson SC, Steven JM, Norwood WI. Results of Norwood’s operation for lesions other than hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 1995;110:1555–1562.

    Article  PubMed  CAS  Google Scholar 

  2. Jensen RA Jr, Williams RG, Laks H, Drinkwater D, Kaplan S. Usefulness of banding of the pulmonary trunk with single ventricle physiology at risk for subaortic obstruction. Am J Cardiol 1996;77:1089–1093.

    Article  Google Scholar 

  3. Daebritz SH, Nollert GD, Zurakowski D, et al. Results of Norwood stage I operation: comparison of hypoplastic left heart syndrome with other malformations. J Thorac Cardiovasc Surg 2000;119:358–367.

    Article  PubMed  CAS  Google Scholar 

  4. Lan YT, Chang RK, Laks H. Outcome of patients with double-inlet left ventricle or tricuspid atresia with transposed great arteries. J Am Coll Cardiol 2004;43:113–119.

    Article  PubMed  Google Scholar 

  5. Cerillo AG, Murzi B, Giusti S, Crucean A, Redaelli S, Vanini V. Pulmonary artery banding and ventricular septal defect enlargement in patients with univentricular atrioventricular connection and the aorta originating from an incomplete ventricle. Eur J Cardiothorac Surg 2002;22:192–199.

    Article  PubMed  Google Scholar 

  6. Lan YT, Chang RK, Drant S, et al. Outcome of staged surgical approach to neonates with single left ventricle and moderate size bulboventricular foramen. Am J Cardiol 2002;89:959–963.

    Article  PubMed  Google Scholar 

  7. Clarke AJ, Kasahara S, Andrews DR, et al. Mid-term results for double-inlet left ventricle and similar morphologies: timing of Damus-Kaye-Stansel. Ann Thorac Surg 2004;78:650–657.

    Article  PubMed  Google Scholar 

  8. Earing MG, Cetta F, Driscoll DJ, et al. Long-term results of the Fontan operation for double-inlet left ventricle. Am J Cardiol 2005;96:291–298.

    Article  PubMed  Google Scholar 

  9. Minich LL, Tani LY, Hawkins JA, et al. Possibility of postnatal left ventricular growth in selected infants with non-apex-forming left ventricles. Am Heart J 1997;133:570–574.

    Article  PubMed  CAS  Google Scholar 

  10. Blaufox AD, Lai WW, Lopex L, et al. Survival in neonatal biventricular repair or left-sided cardiac obstructive lesions associated with hypoplastic left ventricle. Am J Cardiol 1998;82:1138–1140.

    Article  PubMed  CAS  Google Scholar 

  11. Tchervenkov CI, Tahta SA, Justras LC, et al. Biventricular repair in neonates with hypoplastic left heart complex. Ann Thorac Surg 1998;66:1350–1357.

    Article  PubMed  CAS  Google Scholar 

  12. Roberts WC, Perry LW, Chandra RS, et al. Aortic valve atresia: a new classification based on necropsy study of 73 cases. Am J Cardiol 1976;37:753–756.

    Article  PubMed  CAS  Google Scholar 

  13. Iannettoni MD, Bove EL, Mosca RS, et al. Improving results with first-stage palliation for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 1994;107:934–940.

    PubMed  CAS  Google Scholar 

  14. Gutgesell HP, Massaro TA. Management of hypoplastic left heart syndrome in a consortium of university hospitals. Am J Cardiol 1995;76:809–811.

    Article  PubMed  CAS  Google Scholar 

  15. Bove EL, Lloyd TR. Staged reconstruction for hypoplastic left heart syndrome. Contemporary results. Ann Surg 1996;224:387–935.

    Article  PubMed  CAS  Google Scholar 

  16. Bando K, Turrentine MW, Sun K, et al. Surgical management of hypoplastic left heart syndrome. Ann Thorac Surg 1996;62:70–77.

    Article  PubMed  CAS  Google Scholar 

  17. Tweddell JS, Hoffman GM, Musatto KA, et al. Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: lessons learned from 115 consecutive patients. Circulation 2002;106:I82–I89.

    PubMed  Google Scholar 

  18. Chang RK, Chen AY, Klitzner TS. Clinical management of infants with hypoplastic left heart syndrome in the United States, 1988–1997. Pediatrics 2002;110:292–298.

    Article  PubMed  Google Scholar 

  19. Stasik CN, Goldberg CS, Bove EL, Devaney EJ, Ohye RG. Current outcomes and risk factors for the Norwood procedure. J Thorac Cardiovasc Surg 2006;131:412–417.

    Article  PubMed  Google Scholar 

  20. Mitchell ME, Ittenback RF, Gaynor JW, et al. Intermediate outcomes after the Fontan procedure in the current era. J Thorac Cardiovasc Surg 2006;131:172–180.

    Article  PubMed  Google Scholar 

  21. Johnston JK, Chinnock RE, Zuppan CW, et al. Limitations to survival for infants with hypoplastic left heart syndrome before and after transplant: the Loma Linda experience. J Transplant Coord 1997;7:180–186.

    CAS  Google Scholar 

  22. Chrisant MR, Naftel DC, Drummond-Webb J, et al. Fate of infants with hypoplastic left heart syndrome for cardiac transplantation: a multicenter study. J Heart Lung Transplant 2005;24:575–582.

    Article  Google Scholar 

  23. Jacobs ML, Blackstone EH, Bailey LL. Intermediate survival in neonates with aortic atresia: a multi-institutional study. The Congenital Heart Surgeons Society. J Thorac Cardiovasc Surg 1998;116:417–431.

    Article  PubMed  CAS  Google Scholar 

  24. Bailey LL, Gundry SR. Hypoplastic left heart syndrome. Pediatr Clin North Am 1990;37:137–150.

    PubMed  CAS  Google Scholar 

  25. Hennein HA, Bove EL, eds. Hypoplastic Left Heart Syndrome. Armonk, NY: Futura; 2002.

    Google Scholar 

  26. Goldberg CS, Gomez CA. Hypoplastic left heart syndrome: new developments and current controversies. Semin Neonatol 2003;8:461–468.

    Article  PubMed  Google Scholar 

  27. Pearl JM, Nelson DP, Schwartz SM, et al. First-stage palliation for hypoplastic left heart syndrome in the twenty-first century. Ann Thorac Surg 2002;73:331–340.

    Article  PubMed  Google Scholar 

  28. Rychik J, Wernovsky G. Hypoplastic Left Heart Syndrome. Norwell, MA: Kluwer Academic; 2003.

    Google Scholar 

  29. Bove EL, Ohye RG, Devaney EJ. Hypoplastic left heart syndrome: conventional surgical management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2004;7:3–10.

    Article  PubMed  Google Scholar 

  30. Walker SG, Stuth EA. Single-ventricle physiology: perioperative implications. Semin Pediatr Surg 2004;13:188–202.

    Article  PubMed  Google Scholar 

  31. Quintessenza JA, Morell VO, Jacobs JP. Achieving a balance in the current approach to the surgical treatment of hypoplastic left heart syndrome. Cardiol Young 2004;14:127–130.

    Article  PubMed  Google Scholar 

  32. Anderson RH, Pozzi M, Hutchinson S. Hypoplastic Left Heart Syndrome. London, UK: Springer-Verlag; 2005.

    Google Scholar 

  33. Theilen U, Shekerdemian L. The intensive care of infants with hypoplastic left heart syndrome. Arch Dis Child Fetal Neonatal Ed 2005;90:F97–F102.

    Article  PubMed  CAS  Google Scholar 

  34. Sedmera D, Cook AC, Shirali G, McQuinn TC. Current issues and perspectives in hypoplasia of the left heart. Cardiol Young 2005;15:56–72.

    Article  PubMed  Google Scholar 

  35. Atz AM, Feinstein JA, Jonas RA, et al. Preoperative management of pulmonary venous hypertension in hypoplastic left heart syndrome with restrictive atrial septal defect. Am J Cardiol 1999;83:1224–1228.

    Article  PubMed  CAS  Google Scholar 

  36. Rychik J, Rome JJ, Collins MH, et al. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol 1999;34:554–560.

    Article  PubMed  CAS  Google Scholar 

  37. Vlahos AP, Lock JE, McElhinney DB, van der Velde ME. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: outcome after neonatal transcatheter atrial septostomy. Circulation 2004;109:2326–2330.

    Article  PubMed  Google Scholar 

  38. Photiadis J, Urban AE, Sinzohahamvya N, et al. Restrictive left atrial outflow adversely affects outcome after the modified Norwood procedure. Eur J Cardiothorac Surg 2005;27:962–967.

    Article  PubMed  Google Scholar 

  39. Imoto Y, Kado H, Shiokawa Y, et al. Norwood procedure without circulatory arrest. Ann Thorac Surg 1999;68:559–561.

    Article  PubMed  CAS  Google Scholar 

  40. Pigula FA, Siewers RD, Nemoto EM. Regional perfusion of the brain during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg 1999;117:1023–104.

    Article  PubMed  CAS  Google Scholar 

  41. Photiadis J, Asfour B, Sinzobahamvya, et al. Improved hemodynamics and outcome after modified Norwood operation on the beating heart. Ann Thorac Surg 2006;81:976–981.

    Article  PubMed  Google Scholar 

  42. Freedom RM, Sondheimer H, Sische R, et al. Development of “subaortic stenosis” after pulmonary arterial banding for common ventricle. Am J Cardiol 1977;39:78–83.

    Article  PubMed  CAS  Google Scholar 

  43. Webber SA, LeBlanc JG, Keeton BR, et al. Pulmonary artery banding is not contraindicated in double inlet left ventricle with transposition and aortic arch obstruction. Eur J Cardiothorac Surg 1995;9:515–520.

    Article  PubMed  CAS  Google Scholar 

  44. Mair R, Tulzer G, Sames E, et al. Right ventricular to pulmonary artery conduit instead of modified Blalock-Taussig shunt improves postoperative hemodynamics in newborns after the Norwood operation. J Thorac Cardiovasc Surg 2003;126:1378–1384.

    Article  PubMed  Google Scholar 

  45. Bradley SM, Simsic JM, McQuinn TC, et al. Hemodynamic status after the Norwood procedure: a comparison of right ventricle-to-pulmonary artery connection versus modified Blalock-Taussig shunt. Ann Thorac Surg 2004;78:933–941.

    Article  PubMed  Google Scholar 

  46. Sano S, Ishino K, Kawada M, Honjo. Right ventricle-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2004;7:22–31.

    Article  PubMed  Google Scholar 

  47. Azakie A, Martinez D, Sapru A, et al. Impact of right ventricle to pulmonary artery conduit on outcome of the modified Norwood procedure. Ann Thorac Surg 2004;77:1727–1733.

    Article  PubMed  Google Scholar 

  48. Tabbutt S, Dominquez TE, Ravishankar C, et al. Outcomes after the stage I reconstruction comparing the right ventricular to pulmonary artery conduit with the modified Blalock Taussig shunt. Ann Thorac Surg 2005;80:1582–1591.

    Article  PubMed  Google Scholar 

  49. Hoffman GM, Ghanayem NS, Kampine JM, et al. Venous saturation and the anaerobic threshold in neonates after the Norwood procedure for hypoplastic left heart syndrome. Ann Thorac Surg 2000;70:1515–1521.

    Article  PubMed  CAS  Google Scholar 

  50. Riordan CJ, Locher JP Jr, Santamore WP, et al. Monitoring systemic venous oxygen saturations in the hypoplastic left heart syndrome. Ann Thorac Surg 1997;63:835–837.

    Article  PubMed  CAS  Google Scholar 

  51. Taeed R, Schwartz SM, Pearl JM, et al. Unrecognized pulmonary venous desaturation early after Norwood palliation confounds Qp:Qs assessment and compromises oxygen delivery. Circulation 2001;103:2699–2704.

    PubMed  CAS  Google Scholar 

  52. Tweddell JS, Hoffman GM, Fedderly RT, et al. Phenoxybenzamine improves systemic oxygen delivery after the Norwood procedure. Ann Thorac Surg 1999;67:161–168.

    Article  PubMed  CAS  Google Scholar 

  53. Barnea O, Santamore WP, Rossi A, et al: Estimation of oxygen delivery in newborns with a univentricular circulation. Circulation 1998;98:1407–1413.

    PubMed  CAS  Google Scholar 

  54. Barnea O, Austin EH, Richman B, et al: Balancing the circulation: theoretic optimization of pulmonary/systemic flow ratio in hypoplastic left heart syndrome. J Am Coll Cardiol 1994;24:1376–1381.

    PubMed  CAS  Google Scholar 

  55. Francis DP, Willson K, Thorne SA, et al: Oxygenation in patients with a functionally univentricular circulation and complete mixing of blood: are saturation and flow interchangeable? Circulation 1999;100:2198–2203.

    PubMed  CAS  Google Scholar 

  56. Riordan CJ, Randsbeck F, Storey JH, et al. Effects of oxygen, positive end-expiratory pressure, and carbon dioxide on oxygen delivery in an animal model of the univentricular heart. J Thorac Cardiovasc Surg 1996;112:644–654.

    Article  PubMed  CAS  Google Scholar 

  57. Ramamoorthy C, Tabbutt S, Kurth CD, et al. Effects of inspired hypoxic and hypercapnic gas mixtures on cerebral oxygen saturation in neonates with univentricular heart defects. Anesthesiology 2002;96:283–288.

    Article  PubMed  Google Scholar 

  58. Tabbutt S, Ramamoorthy C, Montenegro LM, et al. Impact of inspired gas mixtures on preoperative infants with hypoplastic left heart syndrome during controlled ventilation. Circulation 2001;104:I159–I164.

    Article  PubMed  CAS  Google Scholar 

  59. Bradley SM, Simsic JM, Atz AM. Hemodynamic effects of inspired carbon dioxide after the Norwood procedure. Ann Thorac Surg 2001;72:2088–2094.

    Article  PubMed  CAS  Google Scholar 

  60. Nakano T, Kado H, Shiokawa Y, et al. The low resistance strategy for the perioperative management of the Norwood procedure. Ann Thorac Surg 2004;77:908–912.

    Article  PubMed  Google Scholar 

  61. Bradley SM, Atz AM, Simsic JM. Redefining the impact of oxygen and hyperventilation after the Norwood procedure. J Thorac Cardiovasc Surg 2004;127:473–480.

    Article  PubMed  Google Scholar 

  62. Meliones JN, Bove EL, Dekeon MK, et al. High-frequency jet ventilation improves cardiac function after the Fontan procedure. Circulation 1991;84:III364–III368.

    PubMed  CAS  Google Scholar 

  63. Donnelly JP, Raffel DM, Shulkin BL, et al. Resting coronary flow and coronary flow reserve in human infants after repair or palliation of congenital heart defects as measured by positron emission tomography. J Thorac Cardiovasc Surg 1998;115:103–110.

    Article  PubMed  CAS  Google Scholar 

  64. Williams RV, Ritter S, Tani LY, et al. Quantitative assessment of ventricular function in children with single ventricles using the Doppler myocardial performance index. Am J Cardiol 2000;86:1106–1110.

    Article  PubMed  CAS  Google Scholar 

  65. Lister G, Hellenbrand WE, Kleinman CS, et al. Physiologic effects of increasing hemoglobin concentration in left-to-right shunting in infants with ventricular septal defects. N Engl J Med 1982;306:502–506.

    PubMed  CAS  Google Scholar 

  66. Beekman RH, Tuuri DT. Acute hemodynamic effects of increasing hemoglobin concentration in children with a right to left ventricular shunt and relative anemia. J Am Coll Cardiol 1985;5:357–362.

    PubMed  CAS  Google Scholar 

  67. Forbess JM, Cook N, Serraf A, et al. An institutional experience with second- and third-stage palliative procedures for hypoplastic left heart syndrome: the impact of the bidirectional cavopulmonary shunt. J Am Coll Cardiol 1997;29:665–670.

    Article  PubMed  CAS  Google Scholar 

  68. Lamberti JJ, Mainwaring RD, Spicer RL, et al. Factors influencing perioperative morbidity during palliation of the univentricular heart. Ann Thorac Surg 1995;60:S550–S553.

    Article  PubMed  CAS  Google Scholar 

  69. Reddy VM, McElhinney DB, Moore P, et al. Outcomes after bidirectional cavopulmonary shunt in infants less than 6 months old. J Am Coll Cardiol 1997;29:1365–1370.

    Article  PubMed  CAS  Google Scholar 

  70. Santamore WP, Barnea O, Riordan CJ, et al. Theoretical optimization of pulmonary-to-systemic flow ratio after a bidirectional cavopulmonary anastomosis. Am J Physiol 1998;274:H694–H700.

    PubMed  CAS  Google Scholar 

  71. Rychik J, Jacobs ML, Norwood WI Jr. Acute changes in left ventricular geometry after volume reduction operation. Ann Thorac Surg 1995;60:1267–1274.

    Article  PubMed  CAS  Google Scholar 

  72. Donofrio MT, Jacobs ML, Spray TL, et al. Acute changes in preload, afterload, and systolic function after superior cavopulmonary connection. Ann Thorac Surg 1998;65:503–508.

    Article  PubMed  CAS  Google Scholar 

  73. Fogel MA, Rychik J, Vetter J, et al. Effect of volume unloading surgery on coronary flow dynamics in patients with aortic atresia. J Thorac Cardiovasc Surg 1997;113:718–777.

    Article  PubMed  CAS  Google Scholar 

  74. Filippini LH, Ovaert C, Nykanen DG, et al. Reopening of persistent left superior caval vein after bidirectional cavopulmonary connections. Heart 1998;79:509–512.

    PubMed  CAS  Google Scholar 

  75. Alvarado O, Sreeram N, McKay R, et al. Cavopulmonary connection in repair of atrioventricular septal defect with small right ventricle. Ann Thorac Surg 1993;55:729–736.

    PubMed  CAS  Google Scholar 

  76. Kim YH, Walker PG, Fontaine AA, et al. Hemodynamics of the Fontan connection: an in-vitro study. J Biomech Eng 1995;117:423–428.

    Article  PubMed  CAS  Google Scholar 

  77. Redington AN, Penny D, Shinebourne EA. Pulmonary blood flow after total cavopulmonary shunt. Br Heart J 1991;65:213–217.

    Article  PubMed  CAS  Google Scholar 

  78. Sievers HH, Gerdes A, Kunze J, et al. Superior hydrodynamics of a modified cavopulmonary connection for the Norwood operation. Ann Thorac Surg 1998;65:1741–1745.

    Article  PubMed  CAS  Google Scholar 

  79. Fogel MA, Durning S, Wernovsky G, Pollock AN, Gaynor JW, Nicolson S. Brain versus lung: hierarchy of feedback loops in single-ventricle patients with superior cavopulmonary connection. Circulation 2004;110:II147–II152.

    Article  PubMed  Google Scholar 

  80. Simsic JM, Bradley SM, Muvihill DM. Sodium nitroprusside infusion after bidirectional superior cavopulmonary connection: preserved cerebral blood flow velocity and systemic oxygenation. J Thorac Cardiovasc Surg 2003;126:186–190.

    Article  PubMed  CAS  Google Scholar 

  81. Kawaguchi M, Ohsumi H, Ohnishi Y, Nakajima T, Kuro M. Cerebral vascular reactivity to carbon dioxide before and after cardiopulmonary bypass in children with congenital heart disease. J Thorac Cardiovasc Surg 1993;106:823–827.

    PubMed  CAS  Google Scholar 

  82. Bradley SM, Simsic JM, Mulvihill DM. Hyperventilation impairs oxygenation after bidirectional superior cavopulmonary connection. Circulation 1998;98:II372–II377.

    PubMed  CAS  Google Scholar 

  83. Gamillscheg A, Zobel G, Urlesberger B, et al. Inhaled nitric oxide in patients with critical pulmonary perfusion after Fontan-type procedures and bidirectional Glenn anastomosis. J Thorac Cardiovasc Surg 1997;113:435–442.

    Article  PubMed  CAS  Google Scholar 

  84. Bradley SM, Simsic JM, Mulvihill DM. Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection. J Thorac Cardiovasc Surg 2003;v126:1033–1039.

    Article  Google Scholar 

  85. Frommelt MA, Frommelt PC, Berger S, et al. Does an additional source of pulmonary blood flow alter outcome after a bidirectional cavopulmonary shunt? Circulation 1995;92:II240–II244.

    PubMed  CAS  Google Scholar 

  86. Triedman JK, Bridges ND, Mayer JE Jr, Lock JE. Prevalence and risk factors for aortopulmonary collateral vessels after Fontan and bidirectional Glenn procedures. J Am Coll Cardiol 1993;22:207–215.

    PubMed  CAS  Google Scholar 

  87. Ichikawa H, Yagihara T, Kishimoto H, et al. Extent of aortopulmonary collateral blood flow as a risk factor for Fontan operations. Ann Thorac Surg 1995;59:433–437.

    Article  PubMed  CAS  Google Scholar 

  88. McElhinney DB, Petrossian E, Reddy VM, et al. Extracardiac conduit Fontan procedure without cardiopulmonary bypass. Ann Thorac Surg 1998;66:1826–1828.

    Article  PubMed  CAS  Google Scholar 

  89. Uemura H, Yagihara T, Yamashita K, et al. Establishment of total cavopulmonary connection without use of cardiopulmonary bypass. Eur J Cardiothorac Surg 1998;13:504–508.

    Article  PubMed  CAS  Google Scholar 

  90. Azakie A, McCrindle BW, Van Arsdell G, et al. Extracardiac conduit versus lateral tunnel cavopulmonary connections at a single institution: impact on outcomes. J Thorac Cardiovasc Surg 2001;122:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  91. Celermajer DS, Bull C, Till JA, et al. Ebstein’s anomaly: presentation and outcome from fetus to adult. J Am Coll Cardiol 1994;23:170–176.

    Article  PubMed  CAS  Google Scholar 

  92. Gentles TL, Mayer JE, Jr., Gauvreau K, et al. Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg 1997;114:376–391.

    Article  PubMed  CAS  Google Scholar 

  93. Kaulitz R, Luhmer I, Bergmann F, Rodeck B, Hausdorf G. Sequelae after modified Fontan operation: postoperative haemodynamic data and organ function. Heart 1997;78:154–159.

    PubMed  CAS  Google Scholar 

  94. Bridges ND, Mayer JE, Jr., Lock JE, et al. Effect of baffle fenestration on outcome of the modified Fontan operation. Circulation 1992;86:1762–1769.

    PubMed  CAS  Google Scholar 

  95. Bridges ND, Lock JE, Castaneda AR. Baffle fenestration with subsequent transcatheter closure. Modification of the Fontan operation for patients at increased risk. Circulation 1990;82:1681–1689.

    PubMed  CAS  Google Scholar 

  96. Buheitel G, Hofbeck M, Tenbrink U, Leipold G, vd Emde J, Singer H. Possible sources of right-to-left shunting in patients following a total cavopulmonary connection. Cardiol Young 1998;8:358–363.

    Article  PubMed  CAS  Google Scholar 

  97. Premsekar R, Monro JL, Salmon AP. Diagnosis, management, and pathophysiology of post-Fontan hypoxaemia secondary to Glenn shunt related pulmonary arteriovenous malformation. Heart 1999;82:528–530.

    PubMed  CAS  Google Scholar 

  98. Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation 1997;96:3934–3942.

    PubMed  CAS  Google Scholar 

  99. Shekerdemian LS, Shore DF, Lincoln C, Bush A, Redington AN. Negative-pressure ventilation improves cardiac output after right heart surgery. Circulation 1996;94:II49–II55.

    PubMed  CAS  Google Scholar 

  100. Goldman AP, Delius RE, Deanfield JE, et al. Pharmacological control of pulmonary blood flow with inhaled nitric oxide after the fenestrated Fontan operation. Circulation 1996;94:II44–II48.

    PubMed  CAS  Google Scholar 

  101. Kanter KR, Vincent RN. Management of aortopulmonary collateral arteries in Fontan patients: occlusion improves clinical outcome. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2002;5:48–54.

    Article  PubMed  Google Scholar 

  102. Kanter KR, Vincent RN, Raviele AA. Importance of acquired systemic-to-pulmonary collaterals in the Fontan operation. Ann Thorac Surg 1999;68:969–975.

    Article  PubMed  CAS  Google Scholar 

  103. Spicer RL, Uzark KC, Moore JW, Mainwaring RD, Lamberti JJ. Aortopulmonary collateral vessels and prolonged pleural effusions after modified Fontan procedures. Am Heart J 1996;131:1164–1168.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Schwartz, S.M., Nelson, D.P., Dent, C.L., Musa, N.L., Wheeler, D.S. (2009). Single-Ventricle Lesions. In: Cardiovascular Pediatric Critical Illness and Injury. Springer, London. https://doi.org/10.1007/978-1-84800-923-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-923-3_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-922-6

  • Online ISBN: 978-1-84800-923-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics