Skip to main content

Oxalate Metabolism and the Primary Hyperoxalurias

  • Chapter
  • First Online:
Urinary Tract Stone Disease

Abstract

The primary hyperoxalurias are a group of rare hereditary calcium oxalate kidney stone diseases, the best characterized of which are primary hyperoxaluria type 1 (PH1) and type 2 (PH2). Deficiencies of alanine:glyoxylate aminotransferase (AGT) in PH1 and glyoxylate/hydroxypyruvate reductase (GR/HPR) in PH2 lead to the increased synthesis and excretion of the metabolic end product, oxalate. Insoluble calcium oxalate crystallizes out in the kidney and urinary tract, leading to kidney dysfunction and eventually complete organ failure. More than 100 mutations have been found in PH1, but less than 20 in PH2. The crystal structures of both AGT and GR/HPR have been solved, enabling rationalization of the untoward effects of at least some of the mutations, as well as how in PH1 some of the mutations interact synergistically with the common Pro11Leu polymorphism. A wide variety of enzyme phenotypes are found in PH1, but perhaps the most spectacular is the unparalleled peroxisome-to-mitochondrion AGT mistargeting caused by a combination of the Pro11Leu polymorphism and Gly170Arg mutation. Although remaining catalytically active in this location, mitochondrial AGT is metabolically ineffective. Classic stone treatments, such as hydration and crystallization inhibitors, are applicable to PH1 and PH2. However, some treatments such as pyridoxine therapy and liver transplantation (enzyme replacement therapy) are restricted to PH1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001;59:270-276.

    Article  CAS  PubMed  Google Scholar 

  2. Crawhall JC, de Mowbray RR, Scowen EF, Watts RW. Conversion of glycine to oxalate in a normal subject. Lancet. 1959;2:810.

    Article  CAS  PubMed  Google Scholar 

  3. Knight J, Holmes RP. Mitochondrial hydroxyproline metabolism: implications for primary hyperoxaluria. Am J Nephrol. 2005;25:171-175.

    Article  CAS  PubMed  Google Scholar 

  4. Knight J, Jiang J, Assimos DG, Holmes RP. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int. 2006;70:1929-1934.

    Article  CAS  PubMed  Google Scholar 

  5. Noguchi T. Amino acid metabolism in animal peroxisomes. In: Fahimi HD, Sies H, eds. Peroxisomes in Biology and Medicine. Berlin: Springer-Verlag; 1987:234-243.

    Google Scholar 

  6. Rofe AM, Chalmers AH, Edwards JB. (14C)oxalate synthesis from (U-14C)glyoxylate and (1–14C)glycollate in isolated rat hepatocytes. Biochem Med. 1976;16:277-283.

    Article  CAS  PubMed  Google Scholar 

  7. Rofe AM, James HM, Bais R, Edwards JB, Conyers RA. The production of [14C] oxalate during the metabolism of [14C] carbohydrates in isolated rat hepatocytes. Aust J Exp Biol Med Sci. 1980;58:103-116.

    Article  CAS  PubMed  Google Scholar 

  8. Takayama T, Fujita K, Suzuki K, et al. Control of oxalate formation from L-hydroxyproline in liver mitochondria. J Am Soc Nephrol. 2003;14:939-946.

    Article  CAS  PubMed  Google Scholar 

  9. Holmes RP, Kennedy M. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int. 2000;57:1662-1667.

    Article  CAS  PubMed  Google Scholar 

  10. Massey LK, Roman-Smith H, Sutton RA. Effect of dietary oxalate and calcium on urinary oxalate and risk of formation of calcium oxalate kidney stones. J Am Diet Assoc. 1993;93:901-906.

    Article  CAS  PubMed  Google Scholar 

  11. Barratt TM, Danpure CJ. Hyperoxaluria. In: Barratt TM, Avner ED, Harmon WE, eds. Pediatric Nephrology. Baltimore, MD: Williams & Wilkins; 1999:609-619.

    Google Scholar 

  12. Danpure CJ. Primary hyperoxaluria. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, eds. The Metabolic and Molecular Bases of Inherited Disease, vol. II. New York: McGraw-Hill; 2001:3323-3367.

    Google Scholar 

  13. Danpure CJ, Rumsby G. Molecular aetiology of primary hyperoxaluria and its implications for clinical management. Expert Rev Mol Med. 2004;2004:1-16.

    Google Scholar 

  14. Danpure CJ, Smith LH. The primary hyperoxalurias. In: Coe FL, Favus MJ, Pak CY, Parks JH, Preminger GM, eds. Kidney Stones: Medical and Surgical Management. Philadelphia: Lippincott-Raven; 1996:859-881.

    Google Scholar 

  15. Danpure CJ, Milliner DS. Hereditary disorders of oxalate metabolism – the primary hyperoxalurias. In Warrell DA, Cox TM, Firth JD, eds. Oxford Textbook of Medicine, 5th edition, Oxford: OUP; 2010:1730-1737.

    Google Scholar 

  16. Danpure CJ, Jennings PR. Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986;201:20-24.

    Article  CAS  PubMed  Google Scholar 

  17. Danpure CJ, Jennings PR. Further studies on the activity and subcellular distribution of alanine:glyoxylate aminotransferase in the livers of patients with primary hyperoxaluria type 1. Clin Sci (Lond). 1988;75:315-322.

    CAS  Google Scholar 

  18. Mistry J, Danpure CJ, Chalmers RA. Hepatic D-glycerate dehydrogenase and glyoxylate reductase deficiency in primary hyperoxaluria type 2. Biochem Soc Trans. 1988;16:626-627.

    CAS  Google Scholar 

  19. Cooper PJ, Danpure CJ, Wise PJ, Guttridge KM. Immunocytochemical localization of human hepatic alanine: glyoxylate aminotransferase in control subjects and patients with primary hyperoxaluria type 1. J Histochem Cytochem. 1988;36:1285-1294.

    CAS  PubMed  Google Scholar 

  20. Kamoda N, Minatogawa Y, Nakamura M, Nakanishi J, Okuno E, Kido R. The organ distribution of human alanine-2-oxoglutarate aminotransferase and alanine-glyoxylate aminotransferase. Biochem Med. 1980;23:25-34.

    Article  CAS  PubMed  Google Scholar 

  21. Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat. 2003;22:497.

    Article  PubMed  Google Scholar 

  22. Giafi CF, Rumsby G. Kinetic analysis and tissue distribution of human D-glycerate dehydrogenase/glyoxylare reductase and its relevance to the diagnosis of primary hyperoxaluria type 2. Ann Clin Biochem. 1998;35:104-109.

    CAS  PubMed  Google Scholar 

  23. Zhang X, Roe SM, Hou Y, et al. Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. J Mol Biol. 2003;331:643-652.

    Article  CAS  PubMed  Google Scholar 

  24. Motley A, Lumb MJ, Oatey PB, et al. Mammalian alanine/glyoxylate aminotransferase 1 is imported into peroxisomes via the PTS1 translocation pathway. Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1. J Cell Biol. 1995;131:95-109.

    Article  CAS  PubMed  Google Scholar 

  25. Huber PA, Birdsey GM, Lumb MJ, et al. Peroxisomal import of human alanine:glyoxylate aminotransferase requires ancillary targeting information remote from its C terminus. J Biol Chem. 2005;280:27111-27120.

    Article  CAS  PubMed  Google Scholar 

  26. Ishikawa K, Kaneko E, Ichiyama A. Pyridoxal 5’-phosphate binding of a recombinant rat serine: pyruvate/alanine:glyoxylate aminotransferase. J Biochem (Tokyo). 1996;119:970-978.

    CAS  Google Scholar 

  27. Lumb MJ, Danpure CJ. Functional synergism between the most common polymorphism in human alanine:glyoxylate aminotransferase and four of the most common disease-causing mutations. J Biol Chem. 2000;275:36415-36422.

    Article  CAS  PubMed  Google Scholar 

  28. Oda T, Miyajima H, Suzuki Y, Ichiyama A. Nucleotide sequence of the cDNA encoding the precursor for mitochondrial serine:pyruvate aminotransferase of rat liver. Eur J Biochem. 1987;168:537-542.

    Article  CAS  PubMed  Google Scholar 

  29. Booth MP, Conners R, Rumsby G, Brady RL. Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. J Mol Biol. 2006;360:178-189.

    Article  CAS  PubMed  Google Scholar 

  30. Purdue PE, Lumb MJ, Fox M, et al. Characterization and chromosomal mapping of a genomic clone encoding human alanine:glyoxylate aminotransferase. Genomics. 1991;10:34-42.

    Article  CAS  PubMed  Google Scholar 

  31. Takada Y, Kaneko N, Esumi H, Purdue PE, Danpure CJ. Human peroxisomal L-alanine: glyoxylate aminotransferase Evolutionary loss of a mitochondrial targeting signal by point mutation of the initiation codon. Biochem J. 1990;268:517-520.

    CAS  PubMed  Google Scholar 

  32. Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet. 1999;8:2063-2069.

    Article  CAS  PubMed  Google Scholar 

  33. Rumsby G, Cregeen DP. Identification and expression of a cDNA for human hydroxypyruvate/glyoxylate reductase. Biochim Biophys Acta. 1999;1446:383-388.

    CAS  PubMed  Google Scholar 

  34. Webster KE, Ferree PM, Holmes RP, Cramer SD. Identification of missense, nonsense and deletion mutations in the GRHPR gene in patients with primary hyperoxaluria type II (PH2). Hum Genet. 2000;107:176-185.

    Article  CAS  PubMed  Google Scholar 

  35. Caldwell EF, Mayor LR, Thomas MG, Danpure CJ. Diet and the frequency of the alanine:glyoxylate aminotransferase Pro11Leu polymorphism in different human populations. Hum Genet. 2004;115:504-509.

    Article  CAS  PubMed  Google Scholar 

  36. Purdue PE, Takada Y, Danpure CJ. Identification of mutations associated with peroxisome-to-mitochondrion mistargeting of alanine/glyoxylate aminotransferase in primary hyperoxaluria type 1. J Cell Biol. 1990;111:2341-2351.

    Article  CAS  PubMed  Google Scholar 

  37. Purdue PE, Lumb MJ, Allsop J, Danpure CJ. An intronic duplication in the alanine: glyoxylate aminotransferase gene facilitates identification of mutations in compound heterozygote patients with primary hyperoxaluria type 1. Hum Genet. 1991;87:394-396.

    Article  CAS  PubMed  Google Scholar 

  38. Danpure CJ, Birdsey GM, Rumsby G, Lumb MJ, Purdue PE, Allsop J. Molecular characterization and clinical use of a polymorphic tandem repeat in an intron of the human alanine:glyoxylate aminotransferase gene. Hum Genet. 1994;94:55-64.

    Article  CAS  PubMed  Google Scholar 

  39. Coulter-Mackie MB, Rumsby G. Genetic heterogeneity in primary hyperoxaluria type 1: impact on diagnosis. Mol Genet Metab. 2004;83:38-46.

    Article  CAS  PubMed  Google Scholar 

  40. Pirulli D, Puzzer D, Ferri L, et al. Molecular analysis of hyperoxaluria type 1 in Italian patients reveals eight new mutations in the alanine: glyoxylate aminotransferase gene. Hum Genet. 1999;104:523-525.

    Article  CAS  PubMed  Google Scholar 

  41. von Schnakenburg C, Rumsby G. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene. J Med Genet. 1997;34:489-492.

    Article  Google Scholar 

  42. Tarn AC, von Schnakenburg C, Rumsby G. Primary hyperoxaluria type 1: diagnostic relevance of mutations and polymorphisms in the alanine:glyoxylate aminotransferase gene (AGXT). J Inherit Metab Dis. 1997;20:689-696.

    Article  CAS  PubMed  Google Scholar 

  43. Coulter-Mackie MB. Preliminary evidence for ethnic differences in primary hyperoxaluria type 1 genotype. Am J Nephrol. 2005;25:264-268.

    Article  PubMed  Google Scholar 

  44. Santana A, Salido E, Torres A, Shapiro LJ. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase. Proc Natl Acad Sci USA. 2003;100:7277-7282.

    Article  CAS  PubMed  Google Scholar 

  45. Williams E, Rumsby G. Selected Exonic Sequencing of the AGXT Gene Provides a Genetic Diagnosis in 50% of Patients with Primary Hyperoxaluria Type 1. Clin Chem. 2007;53:1216-1221.

    Article  CAS  PubMed  Google Scholar 

  46. Purdue PE, Allsop J, Isaya G, Rosenberg LE, Danpure CJ. Mistargeting of peroxisomal L-alanine:glyoxylate aminotransferase to mitochondria in primary hyperoxaluria patients depends upon activation of a cryptic mitochondrial targeting sequence by a point mutation. Proc Natl Acad Sci USA. 1991;88:10900-10904.

    Article  CAS  PubMed  Google Scholar 

  47. Abe Y, Shodai T, Muto T, et al. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell. 2000;100:551-560.

    Article  CAS  PubMed  Google Scholar 

  48. Muto T, Obita T, Abe Y, Shodai T, Endo T, Kohda D. NMR identification of the Tom20 binding segment in mitochondrial presequences. J Mol Biol. 2001;306:137-143.

    Article  CAS  PubMed  Google Scholar 

  49. Lumb MJ, Drake AF, Danpure CJ. Effect of N-terminal alpha-helix formation on the dimerization and intracellular targeting of alanine:glyoxylate aminotransferase. J Biol Chem. 1999;274:20587-20596.

    Article  CAS  PubMed  Google Scholar 

  50. Glover JR, Andrews DW, Rachubinski RA. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci USA. 1994;91:10541-10545.

    Article  CAS  PubMed  Google Scholar 

  51. McNew JA, Goodman JM. An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol. 1994;127:1245-1257.

    Article  CAS  PubMed  Google Scholar 

  52. Chen WJ, Douglas MG. The role of protein structure in the mitochondrial import pathway Unfolding of mitochondrially bound precursors is required for membrane translocation. J Biol Chem. 1987;262:15605-15609.

    CAS  PubMed  Google Scholar 

  53. Eilers M, Schatz G. Protein unfolding and the energetics of protein translocation across biological membranes. Cell. 1988;52:481-483.

    Article  CAS  PubMed  Google Scholar 

  54. Danpure CJ, Jennings PR, Fryer P, Purdue PE, Allsop J. Primary hyperoxaluria type 1: genotypic and phenotypic heterogeneity. J Inherit Metab Dis. 1994;17:487-499.

    Article  CAS  PubMed  Google Scholar 

  55. Danpure CJ, Cooper PJ, Wise PJ, Jennings PR. An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J Cell Biol. 1989;108:1345-1352.

    Article  CAS  PubMed  Google Scholar 

  56. Leiper JM, Oatey PB, Danpure CJ. Inhibition of alanine:glyoxylate aminotransferase 1 dimerization is a prerequisite for its peroxisome-to-mitochondrion mistargeting in primary hyperoxaluria type 1. J Cell Biol. 1996;135:939-951.

    Article  CAS  PubMed  Google Scholar 

  57. Danpure CJ, Purdue PE, Fryer P, et al. Enzymological and mutational analysis of a complex primary hyperoxaluria type 1 phenotype involving alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting and intraperoxisomal aggregation. Am J Hum Genet. 1993;53:417-432.

    CAS  PubMed  Google Scholar 

  58. Purdue PE, Lumb MJ, Allsop J, Minatogawa Y, Danpure CJ. A glycine-to-glutamate substitution abolishes alanine:glyoxylate aminotransferase catalytic activity in a subset of patients with primary hyperoxaluria type 1. Genomics. 1992;13:215-218.

    Article  CAS  PubMed  Google Scholar 

  59. Cellini B, Bertoldi M, Montioli R, Paiardini A, Borri VC. Human wild-type alanine:glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications. Biochem J. 2007;408:39-50.

    Article  CAS  PubMed  Google Scholar 

  60. Nishiyama K, Funai T, Katafuchi R, Hattori F, Onoyama K, Ichiyama A. Primary hyperoxaluria type I due to a point mutation of T to C in the coding region of the serine:pyruvate aminotransferase gene. Biochem Biophys Res Commun. 1991;176:1093-1099.

    Article  CAS  PubMed  Google Scholar 

  61. Nishiyama K, Funai T, Yokota S, Ichiyama A. ATP-dependent degradation of a mutant serine: pyruvate/alanine:glyoxylate aminotransferase in a primary hyperoxaluria type 1 case. J Cell Biol. 1993;123:1237-1248.

    Article  CAS  PubMed  Google Scholar 

  62. Hoppe B, Danpure CJ, Rumsby G, et al. A vertical (pseudodominant) pattern of inheritance in the autosomal recessive disease primary hyperoxaluria type 1: lack of relationship between genotype, enzymic phenotype, and disease severity. Am J Kidney Dis. 1997;29:36-44.

    Article  CAS  PubMed  Google Scholar 

  63. Danpure CJ. Molecular and clinical heterogeneity in primary hyperoxaluria type 1. Am J Kidney Dis. 1991;17:366-369.

    CAS  PubMed  Google Scholar 

  64. Rumsby G, Sharma A, Cregeen DP, Solomon LR. Primary hyperoxaluria type 2 without L-glycericaciduria: is the disease under-diagnosed? Nephrol Dial Transplant. 2001;16:1697-1699.

    Article  CAS  PubMed  Google Scholar 

  65. Van Acker KJ, Eyskens FJ, Espeel MF, et al. Hyperoxaluria with hyperglycoluria not due to alanine:glyoxylate aminotransferase defect: a novel type of primary hyperoxaluria. Kidney Int. 1996;50:1747-1752.

    Article  PubMed  Google Scholar 

  66. Danpure CJ, Jennings PR, Watts RW. Enzymological diagnosis of primary hyperoxaluria type 1 by measurement of hepatic alanine: glyoxylate aminotransferase activity. Lancet. 1987;1:289-291.

    Article  CAS  PubMed  Google Scholar 

  67. Rumsby G, Weir T, Samuell CT. A semiautomated alanine:glyoxylate aminotransferase assay for the tissue diagnosis of primary hyperoxaluria type 1. Ann Clin Biochem. 1997;34(Pt 4):400-404.

    CAS  PubMed  Google Scholar 

  68. Rumsby G. Is liver analysis still required for the diagnosis of primary hyperoxaluria type 2? Nephrol Dial Transplant. 2006;21:2063-2064.

    Article  PubMed  Google Scholar 

  69. Knight J, Holmes RP, Milliner DS, Monico CG, Cramer SD. Glyoxylate reductase activity in blood mononuclear cells and the diagnosis of primary hyperoxaluria type 2. Nephrol Dial Transplant. 2006;21:2292-2295.

    Article  CAS  PubMed  Google Scholar 

  70. Monico CG, Rossetti S, Schwanz HA, et al. Comprehensive Mutation Screening in 55 Probands with Type 1 Primary Hyperoxaluria Shows Feasibility of a Gene-Based Diagnosis. J Am Soc Nephrol. 2007;18:1905-1914.

    Article  CAS  PubMed  Google Scholar 

  71. Rumsby G. An overview of the role of genotyping in the diagnosis of the primary hyperoxalurias. Urol Res. 2005;33:318-320.

    Article  PubMed  Google Scholar 

  72. Danpure CJ, Jennings PR, Penketh RJ, Wise PJ, Cooper PJ, Rodeck CH. Fetal liver alanine: glyoxylate aminotransferase and the prenatal diagnosis of primary hyperoxaluria type 1. Prenat Diagn. 1989;9:271-281.

    Article  CAS  PubMed  Google Scholar 

  73. Danpure CJ, Jennings PR, Penketh RJ, Wise PJ, Rodeck CH. Prenatal exclusion of primary hyperoxaluria type 1. Lancet. 1988;1:367.

    Article  CAS  PubMed  Google Scholar 

  74. Danpure CJ, Rumsby G. Strategies for the prenatal diagnosis of primary hyperoxaluria type 1. Prenat Diagn. 1996;16:587-598.

    Article  CAS  PubMed  Google Scholar 

  75. Watts RW, Veall N, Purkiss P. Oxalate dynamics and removal rates during haemodialysis and peritoneal dialysis in patients with primary hyperoxaluria and severe renal failure. Clin Sci. 1984;66:591-597.

    CAS  PubMed  Google Scholar 

  76. Gibbs DA, Watts RW. The action of pyridoxine in primary hyperoxaluria. Clin Sci. 1970;38:277-286.

    CAS  PubMed  Google Scholar 

  77. Monico CG, Olson JB, Milliner DS. Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am J Nephrol. 2005;25:183-188.

    Article  CAS  PubMed  Google Scholar 

  78. Monico CG, Rossetti S, Olson JB, Milliner DS. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 2005;67:1704-1709.

    Article  CAS  PubMed  Google Scholar 

  79. van Woerden CS, Groothoff JW, Wijburg FA, Annink C, Wanders RJ, Waterham HR. Clinical implications of mutation analysis in primary hyperoxaluria type 1. Kidney Int. 2004;66:746-752.

    Article  PubMed  Google Scholar 

  80. Danpure CJ. Scientific rationale for hepatorenal transplantation in primary hyperoxaluria type 1. In: Touraine JL, ed. Transplantation and Clinical Immunology, vol. 22. Amsterdam: Excerpta Medica; 1991:91-98.

    Google Scholar 

  81. de Pauw L, Gelin M, Danpure CJ, et al. Combined liver-kidney transplantation in primary hyperoxaluria type 1. Transplantation. 1990;50:886-887.

    PubMed  Google Scholar 

  82. Watts RW, Calne RY, Rolles K, et al. Successful treatment of primary hyperoxaluria type I by combined hepatic and renal transplantation. Lancet. 1987;2:474-475.

    Article  CAS  PubMed  Google Scholar 

  83. Watts RW, Danpure CJ, de Pauw L, Toussaint. Combined liver-kidney and isolated liver transplantations for primary hyperoxaluria type 1: the European experience. The European Study Group on Transplantation in Hyperoxaluria Type 1. Nephrol Dial Transplant. 1991;6:502-511.

    CAS  PubMed  Google Scholar 

  84. Watts RW, Morgan SH, Danpure CJ, et al. Combined hepatic and renal transplantation in primary hyperoxaluria type I: clinical report of nine cases. Am J Med. 1991;90:179-188.

    CAS  PubMed  Google Scholar 

  85. Danpure CJ, Rumsby G. Proceedings of the 8th International Primary Hyperoxaluria Workshop, UCL-Institute of Child Health, 29–30 June 2007. Urol Res 2007;35:253–254.

    Google Scholar 

  86. Morello JP, Petaja-Repo UE, Bichet DG, Bouvier M. Pharmacological chaperones: a new twist on receptor folding. Trends Pharmacol Sci. 2000;21:466-469.

    Article  CAS  PubMed  Google Scholar 

  87. Lumb MJ, Birdsey GM, Danpure CJ. Correction of an enzyme trafficking defect in hereditary kidney stone disease in vitro. Biochem J. 2003;374:79-87.

    Article  CAS  PubMed  Google Scholar 

  88. Guha C, Yamanouchi K, Jiang J, et al. Feasibility of hepatocyte transplantation-based therapies for primary hyperoxalurias. Am J Nephrol. 2005;25:161-170.

    Article  PubMed  Google Scholar 

  89. Jiang J, Salido EC, Guha C, et al. Correction of hyperoxaluria by liver repopulation with hepatocytes in a mouse model of primary hyperoxaluria type-1. Transplantation. 2008;85:1253-1260.

    Article  CAS  PubMed  Google Scholar 

  90. Salido EC, Li XM, Lu Y, et al. Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proc Natl Acad Sci USA. 2006;103:18249-18254.

    Article  CAS  PubMed  Google Scholar 

  91. Allison MJ, Cook HM, Milne DB, Gallagher S, Clayman RV. Oxalate degradation by gastrointestinal bacteria from humans. J Nutr. 1986;116:455-460.

    CAS  PubMed  Google Scholar 

  92. Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol. 1985;141:1-7.

    Article  CAS  PubMed  Google Scholar 

  93. Duncan SH, Richardson AJ, Kaul P, Holmes RP, Allison MJ, Stewart CS. Oxalobacter formigenes and its potential role in human health. Appl Environ Microbiol. 2002;68:3841-3847.

    Article  CAS  PubMed  Google Scholar 

  94. Hoppe B, Beck B, Gatter N, von UG, Tischer A, Hesse A, Laube N, Kaul P, Sidhu H. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int 2006;70:1305–1311.

    Google Scholar 

  95. Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006;69:691-698.

    Article  CAS  PubMed  Google Scholar 

  96. Hatch M, Freel RW. The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol. 2008;28:143-151.

    Article  CAS  PubMed  Google Scholar 

  97. Monico CG, Milliner DS. Hyperoxaluria and urolithiasis in young children: an atypical presentation. J Endourol. 1999;13:633-636.

    Article  CAS  PubMed  Google Scholar 

  98. Monico CG, Persson M, Ford GC, Rumsby G, Milliner DS. Potential mechanisms of marked hyperoxaluria not due to primary hyperoxaluria I or II. Kidney Int. 2002;62:392-400.

    Article  CAS  PubMed  Google Scholar 

  99. Birdsey GM, Lewin J, Holbrook JD, Simpson VR, Cunningham AA, Danpure CJ. A comparative analysis of the evolutionary relationship between diet and enzyme targeting in bats, marsupials and other mammals. Proc R Soc B. 2005;272:833-840.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Danpure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Danpure, C.J. (2010). Oxalate Metabolism and the Primary Hyperoxalurias. In: Rao, N., Preminger, G., Kavanagh, J. (eds) Urinary Tract Stone Disease. Springer, London. https://doi.org/10.1007/978-1-84800-362-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-362-0_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-361-3

  • Online ISBN: 978-1-84800-362-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics