Arithmetic on Bounded Families of Distributions A Denv Algorithm Tutorial

  • Daniel BerleantEmail author
  • Gary Anderson
  • Chaim Goodman-Strauss
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Marginal Probability Interior Cell Dependency Relationship Monte Carlo Model Envelope Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berleant, D., Anderson, G.T.: Decision-making under severe uncertainty for autonomous mobile robots. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (2007)Google Scholar
  2. 2.
    Berleant, D., Cheng, H.: A software tool for automatically verified operations on intervals and probability distributions. Reliable Computing 4, 71–82 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Berleant, D., Goodman-Strauss, C.: Bounding the results of arithmetic operations on random variables of unknown dependency using intervals. Reliable Computing 4, 147–165 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berleant, D., Zhang, J.: Representation and problem solving with distribution envelope determination (DEnv). Reliability Engineering and System Safety 85, 153–168 (2004)CrossRefGoogle Scholar
  5. 5.
    Berleant, D., Zhang, J.: Using Pearson correlation to improve envelopes around the distributions of function. Reliable Computing 10, 139–161 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Berleant, D., Zhang, J.: Bounding the times to failure of 2-component systems. IEEE Transactions on Reliability 53, 542–550 (2004)CrossRefGoogle Scholar
  7. 7.
    Berleant, D., Kosheleva, O., Kreinovich, V., Nguyen, H.T.: Unimodality, independence lead to NP–hardness of interval probability problems. Reliable Computing 13, 261–282 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fellin, W., Lessmann, H., Oberguggenberger, M., Vieider, R.: Analyzing Uncertainty in Civil Engineering. Springer-Verlag, Berlin (2005)CrossRefGoogle Scholar
  9. 9.
    Ferson, S., Hajagos, J., Berleant, D., Zhang, J., Tucker, W.T., Ginzburg, L., Oberkampf, W.: Dependence in Dempster–Shafer theory and probability bounds analysis. Tech. rep., Sandia National Laboratory (2004). Report SAND2004-3072Google Scholar
  10. 10.
    Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S., Sentz, K.: Constructing probability boxes and Dempster–Shafer structures. Technical Report SAND2002-4015, Sandia National Laboratories (2003).Google Scholar
  11. 11.
    Halpern, J.Y.: Reasoning about uncertainty. MIT Press, Cambridge, MA (2003)zbMATHGoogle Scholar
  12. 12.
    Helton, J.C., Oberkampf, W.L.: Special issue on alternative representations of epistemic uncertainty. Reliability Engineering and System Safety 85, 1–369 (2004)CrossRefGoogle Scholar
  13. 13.
    Kolmogoroff, A.: Confidence limits for an unknown distribution function. Annals of Mathematical Statistics 12, 461–463 (1941)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kuznetsov, V.: Interval statistical models. Radio i Svyaz, Moscow (1991)(in Russian)Google Scholar
  15. 15.
    Manski, C.: Partial Identification of Probability Distributions. Springer-Verlag, New York (2003)zbMATHGoogle Scholar
  16. 16.
    Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, New York (1990)Google Scholar
  17. 17.
    Wang, R., Pierce, E., Madnick, S., Fisher, C. (eds.): Information Quality. M. E. Sharpe, Armonk, NY (2005)Google Scholar
  18. 18.
    Zhang, J., Berleant, D.: Arithmetic on random variables: squeezing the envelopes with new joint distribution constraints. In: Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications (ISIPTA ’05), pp. 416–422 (2005)Google Scholar

Copyright information

© Springer-Verlag London 2008

Authors and Affiliations

  • Daniel Berleant
    • 1
    Email author
  • Gary Anderson
    • 2
  • Chaim Goodman-Strauss
    • 3
  1. 1.Department of Information ScienceUniversity of Arkansas at Little RockUSA
  2. 2.Department of Applied ScienceUniversity of Arkansas at Little RockLittle RockUSA
  3. 3.Department of MathematicsUniversity of ArkansasFayettevilleUSA

Personalised recommendations