Interval-Weighted Graphs and Flow Networks

  • Chenyi HuEmail author
  • Ping Hu
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Short Path Span Tree Minimum Span Tree Fuzzy Membership Weighted Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16(1), 87–90 (1958). URL
  3. 3.
    Borůvka, O.: On a certain minimal problem. Práce pravslé přírodověcké společnosti 3, 37-58 (1926)Google Scholar
  4. 4.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959). URL
  5. 5.
    Edmonds, J., Karp, R.: Theoretical improvements in the algorithmic efficiency for network flow problems. ACM 19, 248–264 (1972)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley, New York (1985)zbMATHGoogle Scholar
  7. 7.
    Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton, NJ (1962)zbMATHGoogle Scholar
  8. 8.
    Goodrich, M., Tamassia, R.: Algorithm Design: Foundations, Analysis, and Internet Examples. Wiley, New York (2002)zbMATHGoogle Scholar
  9. 9.
    Hu, P., Hu, C.: Fuzzy partial-order relations for intervals and interval weighted graphs. In: Proceedings of Foundations of Computational Intelligence, pp. 120-127 IEEE, New York (2007)Google Scholar
  10. 10.
    Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The tractable subalgebras of Allen’s interval algebra. Journal of the Association for Computing Machinery 50(5), 591–640 (2003)MathSciNetGoogle Scholar
  11. 11.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7(1), 48–50 (1956)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401 (1957)Google Scholar

Copyright information

© Springer-Verlag London 2008

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of Central ArkansasConwayUSA

Personalised recommendations