Interval Rule Matrices for Decision Making

  • Chenyi HuEmail author
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Training Dataset Intrusion Detection Intrusion Detection System Interval Vector Environment Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press Inc., New York (1983). Translation by J. Rokne from the original German “Einführung In Die Intervallrechnung”Google Scholar
  2. 2.
    Bace, R., Mell, P.: NIST special publication on intrusion detection system. Technical report, NIST (National Institute of Standards and Technology) (2001).
  3. 3.
    Berleant, D., Cheong, M.P., Chu, C.C.N., Guan, Y., Kamal, A., Sheble, G., Ferson, S., Peters, J.F.: Dependable handling of uncertainty. Reliable Computing 9(6), 407–418 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    de Korvin, A., Hu, C., Chen, P.: Generating and applying rules for interval valued fuzzy observations. In: Z.R. Yang, R.M. Everson, H. Yin (eds.) Intelligent Data Engineering and Automated Learning, Lecture Notes in Computer Science, Vol. 3177, pp. 279–284. Springer-Verlag, Heidelberg (2004)Google Scholar
  5. 5.
    de Korvin, A., Hu, C., Sirisaengtaksin, O.: On firing rules of fuzzy sets of type II. Applied Mathematics 3, 151-159 (2000)zbMATHGoogle Scholar
  6. 6.
    Duan, Q., Hu, C., Wei, H.C.: Enhancing network intrusion detection systems with interval methods. In: Proceedings of the ACM Symposium on Applied Computing, pp. 1444–1448 (2005)Google Scholar
  7. 7.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Machine Learning Research 3, 1157–1182 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analysis: A rule-based intrusion detection approach. Software Engineering 21(3), 181–199 (1995)CrossRefGoogle Scholar
  9. 9.
    Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23, 665–684 (1993)CrossRefGoogle Scholar
  10. 10.
    Julisch, K.: Clustering intrusion detection alarms to support root cause analysis. ACM Transactions on Information and System Securroty 6(4), 443–471 (2003)CrossRefGoogle Scholar
  11. 11.
    Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River, NJ (2001)zbMATHGoogle Scholar
  12. 12.
    Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets and Systems 17, 99–102 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Seleznyov, A., Puuronen, S.: Anomaly intrusion detection systems: Handling temporal relations between events. In: Proceedings of Recent Advances in Intrusion Detection, West Lafayette, IN (1999).
  14. 14.
    Shary, S.P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliable Computing 8(5), 321–418 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics SMC-3, 28–44 (1973)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London 2008

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Central ArkansasConwayUSA

Personalised recommendations