Interval Matrices in Knowledge Discovery

  • Chenyi HuEmail author
  • R. Baker Kearfott
Part of the Advanced Information and Knowledge Processing book series (AI&KP)


Singular Value Decomposition Estimation Ratio Knowledge Processing Fuzzy Random Variable Matrix Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, H.S., Chen, Y.Q.: Exact maximum singular value calculation of an interval matrix. IEEE Transactions on Automatic Control 52, 510–514 (2007)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alefeld, G.: Über Die DurchfÜhrbarkeit Des Gaussschen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten. Computing 1 (Supplementum), 15-19 (1977)Google Scholar
  3. 3.
    Chabert, G., Goldsztejn, A.: Extension of the Hansen-Bliek method to right-quantified linear systems. Reliable Computing 13(4), 325–349 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, N.F., Roll, R., Ross, S.A.: Economic forces and the stock market. Journal of Business 59(3), 383–403 (1986). Google Scholar
  5. 5.
    Deif, A.S.: Singular values of an interval matrix. Linear Algebra and its Applications 151, 125–133 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gioia, F., Lauro, C.N.: Principal component analysis on interval data. Computational Statistics 21(2), 343–363 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Applied Optimization Vol. 10. Kluwer Academic Publishers Group, Norwell, MA (1998)Google Scholar
  8. 8.
    Lauro, C., Palumbo, F.: New approaches to principal component analysis of interval data (1998). Scholar
  9. 9.
    Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the United States of America 36, 48–49 (1950)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Neumaier, A.: Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications, Vol. 37. Cambridge University Press, Cambridge, UK (1990)Google Scholar
  11. 11.
    Nooner, M., Hu, C.: A computational environment for interval matrices. In: R.L. Muhanna, R.L. Mullen (eds.) Proceedings of a workshop on Reliable Engineering Computing, pp. 65--74. Georgia Tech. University, Savanna, GA (2006)

Copyright information

© Springer-Verlag London 2008

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Central ArkansasConwayUSA
  2. 2.Department of MathematicsUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations