Semantic Service Matching in the Context of ODSOI Project

  • S. Izza
  • L. Vincent


Matching services still constitutes a big challenge for most of enterprises in general and notably for large and dynamic ones. This paper delineates a service similarity approach in the context of ODSOI (Ontology-Driven Service-Oriented Integration) project that concern the intra-enterprise integration issues in the field of manufacturing industry. Our approach is based on an extension of OWL-S service similarity. It proposes a rigorous quantitative ranking method based on some novel semantic similarity degrees. An implementation of this ranking method is provided in the form of a prototype coded on Java platform exploiting some existing APIs mainly Racer OWL API, and OWL-S-API.


Information System Integration Ontology Semantics Service Similarity Matching OWL-S 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Burstein M. H., Bussler C., Zaremba M., Finin T. W., Huhns M. N., Paolucci M., Sheth A. P. and Williams S. K., “A Semantic Web Services Architecture”. IEEE Internet Computing 9(5): 72–81 (2005).CrossRefGoogle Scholar
  2. [2]
    Cardoso A. J. S., “Quality of service and semantic composition of workflows”. PhD Thesis, University of Georgia, Athens, Georgia, 2002.Google Scholar
  3. [3]
    Corallo A., Elia G., Lorenzo G. and Solazzo G., “A Semantic Recommender Engine enabling an eTourism Scenario”. ISWC2005 International Semantic Web Conference 2005, 6–10 November 2005, Galway, Ireland.Google Scholar
  4. [4]
    Correla M. A. and Castels P., “A Heuristic Approach to Semantic Web Services Classification”. 10th International Conference on Knowledge-Based & Intelligent Information & Engineering Systems (KES 2006), Invited Session on Engineered Applications of Semantic Web (SWEA). Bournemouth, UK, October 2006. Springer Verlag Lecture Notes in Computer Science, Vol. 4253, ISBN 978-3-540-46542-3, pp. 598–605.Google Scholar
  5. [5]
    Dong X., Halevy A., Madhavan J., Nemes E. and Zhang J., “Similarity Search for Web Services”. In proceedings of the 30th VLDB Conference, Toronto, Canada,, 2004.Google Scholar
  6. [6]
    Eclipse, “Eclipse-an open development platform”. 2005, (accessed 3 March 2005).Google Scholar
  7. [7]
    Ehrig M., Haase P., Hefke M. and Stojanovic N., “Similarity for ontology-a comprehensive framework”. In Workshop Enterprise Modelling and Ontology: Ingredients for Interoperability, 2004.Google Scholar
  8. [8]
    Ganjisaffar Y., Abolhassani H., Neshati M. and Jamali M., “A Similarity Measure for OWL-S Annotated Web Services”. Web Intelligence (WI’06), IEEE/WIC/ACM pp. 621–624, 2006.Google Scholar
  9. [9]
    Haarslev V. and Möller R., “RACER System Description”. In Proceedings of the International Joint Conference on Automated Reasoning, June 18–23, 2001.Google Scholar
  10. [10]
    Hau J., Lee W., and Darlington J., “A semantic Measure for Semantic Web Services”. WWW2005, May 10–14, 2005, Chiba, Japan.Google Scholar
  11. [11]
    Izza S., Vincent L. and Burlat P., “A Framework for Semantic Enterprise Integration”. In Proceedings of INTEROP-ESA’05, Geneva, Switzerland, pp-78–89, 2005.Google Scholar
  12. [12]
    Izza S., Vincent L., Burlat P., Lebrun P. and Solignac H., “Extending OWL-S to Solve Enterprise Application Integration Issues”. Interoperability for Enterprise Software and Applications Conference (I-ESA’06), Bordeaux, France, 2006.Google Scholar
  13. [13]
    Jaeger M. C., Rojec-Goldmann G., Liebetruth C., Mühl G. and Geihs K., “Ranked Matching for Service Descriptions Using OWL-S”. Springer Berlin Heidelberg, 2005. ISBN: 978-3-540-24473-8.Google Scholar
  14. [14]
    KnowledgeWeb, “Deliverables of KWEB Project”. EU-IST-2004-507482, 2004,, accessed 10 June 2006.Google Scholar
  15. [15]
    Li L. and Horrocks I., “A software framework for matchmaking based on semantic web technology”. In the International Journal of Electronic Commerce, 8(4):39–60, 2004.Google Scholar
  16. [16]
    Mädche A. and Zacharias V., “Clustering ontology-based metadata in the semantic web”. In proceedings 13th ECML and 6th PKDD, Helsinki (FI), 2002.Google Scholar
  17. [17]
    Mindswap Group, “OWL-S API”. 2005, (accessed 24 March 2006).Google Scholar
  18. [18]
    Paolucci M., Kawamura T. and Payne T., “Sycara, K.: Semantic Matching of Web Service Capabilities”. In proceedings of the First International Semantic Web Conference, 2002.Google Scholar
  19. [19]
    Resnik P. “Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language”. In Journal of Artificial Intelligence Research, volume 11, pages, 95–130, July 1999.zbMATHGoogle Scholar
  20. [20]
    Roda R., Mili H., Bicknell E. and Blettner M., “Development and application of a metric on semantic nets”. In IEEE Transactions on Systems, Man, and Cybernetics, volume 19, Jan/Feb 1989.Google Scholar
  21. [21]
    Sourceforge, “OWL API”., accessed April 2006.Google Scholar
  22. [22]
    Sycara K., Widoff S., Klusch M. and Lu J., “Larks: Dynamic Matchmaking Among Heterogeneous Software Agents in Cyberspace”, ACM Portal, Source: Autonomous Agents and Multi-Agent Systems, v5, issue 2, pp. 173–203, June 2002.CrossRefGoogle Scholar
  23. [23]
    Valtchev P. and Euzenat J., “Dissimilarity measure for collections of objects and values”. In proceedings Coen X. Liu and M. Berthold, editors, Proc. 2nd Symposium on Intelligent Data Analysis., Vol. 1280, pp. 259–272, 1997.Google Scholar
  24. [24]
    Tommaso D. N., Di Sciascio E., Donini F. M. and Mongiello M., “A System for Principled Matchmaking in an Electronic Marketplace”. In proceedings of the Twelfth International Conference on World Wide Web (WWW), 2003.Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • S. Izza
    • 1
  • L. Vincent
    • 1
  1. 1.Industrial Engineering and Computer Science Laboratory, OMSI DivisionEcole des Mines de Saint-ÉtienneSaint-Etienne, Cedex 2France

Personalised recommendations