Matching of Process Data and Operational Data for a Deep Business Analysis

  • Sylvia Radeschütz
  • Bernhard Mitschang
  • Frank Leymann


Efficient adaptation to new situations of a company’s business and its business processes plays an important role for achieving advantages in competition to other companies. For an optimization of processes, a profound analysis of all relevant information in the company is necessary. Analyses typically specialize either on process analysis or on data warehousing of operational data. A consolidation of major business data sources is needed to analyze and optimize processes in a much more comprehensive scope. This paper introduces a framework that offers various alternatives for matching process data and operational data to obtain a consolidated data description.


Interoperability for Enterprise Application Integration Architectures and platforms for interoperability Interoperability for integrated product and process modeling Ontology based methods and tools for interoperability Design methodologies for interoperable systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Agrawal et al.: Mining Process Models from Workflow Logs. EDBT 1998.Google Scholar
  2. [2]
    A. Bosca et al.: Composing web services on the basis of natural language requests. ICWS 2005.Google Scholar
  3. [3]
    R. Bruckner et al.: Striving Towards Near Real-Time Data Integration for Data Warehouses. DaWaK 2002.Google Scholar
  4. [4]
    Object Management Group: Business Process Modeling Notation. Final Adopted Specification., 2006.Google Scholar
  5. [5]
    J. Cardoso; A.P. Sheth: Semantic Web Services, Processes and Applications. Springer, New York 2006.zbMATHGoogle Scholar
  6. [6]
    F. Casati et al.: A Generic solution for Warehousing Business Process Data. VLDB 2007.Google Scholar
  7. [7]
    A. Doan; A. Halevy: Semantic Integration Research in the Database Community: A Brief Survey. AI Magazine 2005.Google Scholar
  8. [8]
    H. Dresner: Business Activity Monitoring: BAM Architecture. Gartner Symposium ITXPO 2003.Google Scholar
  9. [9]
    E. Gabrilovich; S. Markovitch: Computing Semantic Relatedness Using Wikipediabased Explicit Semantic Analysis. IJCAI 2007.Google Scholar
  10. [10]
    J. Han et al.: Data Mining: Concepts and Techniques. Morgan Kaufmann 2006.Google Scholar
  11. [11]
    M. Hepp et al.: Semantic Business Process Management: Using Semantic Web Services for Business Process Management. ICEBE 2005.Google Scholar
  12. [12]
    IBM: IBM WebSphere Process Server V6.0.2. Scholar
  13. [13]
    IBM: IBM Information Server. Scholar
  14. [14]
    J. Kopecky et al.: Semantic Web Services Grounding. AICT/ICIW 2006.Google Scholar
  15. [15]
    D. Kuropka; M. Weske: Die Adaptive Services Grid Plattform: Motivation, Potential, Funktionsweise und Anwendungsszenarien. Emisa Forum, 2006.Google Scholar
  16. [16]
    U. Leser; F. Naumann: Informationsintegration. Dpunkt, Heidelberg 2007.zbMATHGoogle Scholar
  17. [17]
    Oracle: Oracle Business Activity Monitoring. Scholar
  18. [18]
    Oracle: Oracle Data Mining. Scholar
  19. [19]
    V. Rubin et al.: Process Mining Framework for Software Processes. ICSP 2007.Google Scholar
  20. [20]
    M. Sayal; F. Casati; U. Dayal; M. Shan: Business Process Cockpit. VLDB 2002.Google Scholar
  21. [21]
    SAWSDL: Semantically Annotated WSDL. Scholar
  22. [22]
    S. Weerawarana et al.: Web Services Platform Architecture. Prentice Hall 2005.Google Scholar
  23. [23]
    M. zur Mühlen: Workflow-based Process Controlling. Foundation, Design, and Implementation of Workflow-driven Process Information Systems. Logos 2004.Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Sylvia Radeschütz
    • 1
  • Bernhard Mitschang
    • 1
  • Frank Leymann
    • 1
  1. 1.Universität StuttgartStuttgartGermany

Personalised recommendations