Skip to main content

Machining of Particulate-Reinforced Metal Matrix Composites

  • Chapter
Machining

Abstract

The presence of hard reinforce particles in two phases materials, such as metal matrix composites (MMCs), introduces additional effects, such as tool–particle interactions, localised plastic deformation of matrix material, possible crack generation in the shear plane etc., over the monolithic material during machining. These change the force, residual stress, machined surface profile generation, chip formation and tool wear mechanisms. Additional plastic deformation in the matrix material causes compressive residual stress in the machined surface, brittle chips and improved chip disposability. Possible crack formation in the shear plane is responsible for low machining force and strength and higher chip disposability. Tool–particle interactions are responsible for higher tool wear and voids/cavities in the machined surface. This chapter presents the effects of reinforcement particles on surface integrity and chip formation in MMCs. The modelling of cutting is also discussed. Finally, tool wear mechanisms are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rashad RM, El-Hossainy TM (2006) Machinability of 7116 structural aluminum alloy. Mater Manuf Process 21: 23–27

    Article  Google Scholar 

  2. Durante S, Rutelli G, Rabezzana F (1997) Aluminum-based MMC machining with diamond-coated cutting tools. Surf Coatings Technol 94–95: 632–640

    Google Scholar 

  3. Heath PJ (2001) Developments in the applications of PCD tooling. J Mater Process Technol 116: 31–38

    Article  Google Scholar 

  4. Davim JP (2002) Diamond tool performance in machining metal–matrix composites. J Mater Process Technol 128: 100–105

    Article  Google Scholar 

  5. Pedersen W, Ramulu M (2006) Facing SiCp/Mg metal matrix composites with carbide tools. J Mater Process Technol 172: 417–423

    Article  Google Scholar 

  6. Chambers AR (1996) The machinability of light alloy MMCs. Composites: Part A 27: 143–147

    Article  Google Scholar 

  7. Davim JP, Baptista AM (2000) Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. J Mater Process Technol 103: 417–423

    Article  Google Scholar 

  8. Hung NP, Loh NL, Venkatesh VC (1999) Machining of metal matrix composites, in Machining of Ceramics and Composites: ed by S. Jahanmir, M. Ramulu and P. Koshy, 1999, Marcel Dekker, New York. Basel, ISBN 082470178X

    Google Scholar 

  9. Wang Z, Chen T, Lloyd DJ (1993) Stress distribution in particulate-reinforced metal-matrix composites subjected to external load. Metall Trans 24(A): 197–207

    Google Scholar 

  10. Huda D, El-Baradie MA, Hashmi MSJ (1994) Analytical study for the stress analysis of metal matix composites. J Mater Process Technol 45: 429–434

    Article  Google Scholar 

  11. Shi N, Arsenault RJ (1991) Analytical evaluation of the thermal residual stresses in Si/Al composites. JSME Int J 34(2): 143–155

    Google Scholar 

  12. Zhao B, Liu CS, Zhu XS, Xu KW (2002) Research on the vibration cutting performance of particle reinforced metallic matrix composites SiCp/Al. J Mater Process Technol 129(1–3): 380–384

    Article  Google Scholar 

  13. Brun MK, Lee M, Gorsler F (1985) Wear characteristics of various hard materials for machining SiC-reinforced aluminum alloy. Wear 104(1): 21–29

    Article  Google Scholar 

  14. Narutaki N (1996) Machining of MMCs. VDI Berichte NR 1276: 359–370

    Google Scholar 

  15. Clyne TW, Withers PJ (1993) An introduction to metal matrix composites, 1st edition. Cambridge University Press, ISBN 0-521-41808-9

    Google Scholar 

  16. Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behaviour of metal matrix composites: tool-particle interaction during orthogonal cutting. Int J Mach Tools Manuf 47: 1497–1506

    Article  Google Scholar 

  17. Mussert KM, Vellinga WP, Bakker A, Zwaag SVD (2002) A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061 – Al2O3 MMC. J Mater Sci 37(4): 789–794

    Article  Google Scholar 

  18. Leggoe JW (2004) Determination of the elastic modulus of microscale ceramic particles via nanoindentation. J Mater Res 19(8): 2437–2447

    Article  Google Scholar 

  19. Pramanik A, Zhang LC, Arsecularatne JA (2007) Micro-indentation of metal matrix composites – an FEM analysis. Key Eng Mater 340–341: 563–570

    Google Scholar 

  20. Lin JT, Bhattacharyya D, Lane C (1995) Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear 181–183: 883–888

    Google Scholar 

  21. Pramanik A, Zhang LC, Arsecularatne J. Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf (under review)

    Google Scholar 

  22. Lin JT (1997) Bhattacharyya, D. and Ferguson, W.G., Chip formation in the machining of SiC particle reinforced aluminium matrix composites. Compos Sci Technol 58: 285–291

    Article  Google Scholar 

  23. Karthikeyan R, Ganesan G, Nagarazan RS, Pai BC (2001) A critical study on machining of Al/SiC composites. Mater Manuf Process 16(1): 47–60

    Article  Google Scholar 

  24. Joshi SS, Ramakrishnan N, Ramakrishnan P (2001) Micro-structural analysis of chip formation during orthogonal machining of Al/SiCp composites. J Eng Mater Technol 123: 315–321

    Article  Google Scholar 

  25. Hung NP, Yeo SH, Lee KK, Ng KJ (1998) Chip formation in machining particle-reinforced metal matrix composites. Mater Manuf Process 13(1): 85–100

    Article  Google Scholar 

  26. Ozcatalbas Y (2003a) Investigation of the machinability behaviour of Al4C3 reinforced Al-based composite produced by mechanical alloying technique. Compos Sci Technol 63(1): 53–61

    Article  Google Scholar 

  27. Ozcatalbas Y (2003b) Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Mater Des 24(3): 215–221

    Google Scholar 

  28. Quan, YM, Zhou, ZH and Ye, BY (1999), Cutting process and chip appearance of aluminium matrix composites reinforced by SiC particle, J Mater Process Technol, 91(1), 231–235

    Article  Google Scholar 

  29. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of Metal Matrix Composites. Int J Mach Tools Manuf 46: 1795–1803

    Article  Google Scholar 

  30. Dieter GE (1988) Mechanical Metallurgy, SI Metric Edition, McGraw-Hill, UK

    Google Scholar 

  31. Clausen AH, Borvik T, Hopperstad OS, Benallal A (2004) Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Mater Sci Eng A364: 260–272

    Google Scholar 

  32. Wulf GL (1978) The high strain rate compression of 7039 aluminium. Int J Mech Sci 20(9): 609–615

    Article  Google Scholar 

  33. Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M (2005) High strain rate tensile testing of automotive aluminium alloy sheet. Int J Impact Eng 32: 541–560

    Article  Google Scholar 

  34. Davim JP (2007) Application of Merchant theory in machining particulate metal matrix composites. Mater Des 10: 2684–2687

    Google Scholar 

  35. Oxley PLB (1989) The mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood, Chichester

    Google Scholar 

  36. Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation. J Mater Process Technol 121: 123–135

    Article  Google Scholar 

  37. Li Y, Ramesha KT, Chin ESC (2004) The mechanical response of an A359/SiCp MMC and the A359 aluminium matrix to dynamic shearing deformations. Mater Sci Eng A 382: 162–170

    Article  Google Scholar 

  38. Li Y, Ramesh KT (1998) Influence of particle volume fraction, shape, and aspect ratio on the behaviour of particle-reinforced metal matrix composites at high rates of strain. Acta Mater 46(16): 5633–5646

    Article  Google Scholar 

  39. Li Y, Ramesh KT, Chin ESC (2000) The compressive viscoplastic response of an A359/SiCp metal-matrix composite and of the A359 aluminium alloy matrix. Int J Solids Struct 37:7547–7562

    Article  Google Scholar 

  40. Zhang ZF, Zhang LC, Mai YW (1995) Particle effects on friction and wear of aluminium matrix composites. J Mater Sci 30(23): 5999–6004

    Article  Google Scholar 

  41. Chichili DR, Ramesh KT (1995) Dynamic failure mechanisms in a 6061-T6 Al/Al2O3 metal-matrix composite. Int J Solids Struct 32(17–18): 2609–2626

    Article  Google Scholar 

  42. Yadav S, Chichili DR, Ramesh KT (1995) Mechanical response of a 6061-T6 Al/Al2O3 metal matrix composite at high rates of deformation. Acta Metall Materialia 43(12):4453

    Article  Google Scholar 

  43. Oxley PLB (1962) Shear angle solutions in orthogonal machining. Int J Mach Tool Des Res 2(3): 219–229

    Article  Google Scholar 

  44. Ng E, Aspinwall DK (2002) The effect of workpiece hardness and cutting speed on the machinability of AISI H13 hot work die steel when using PCBN tooling. Trans ASME 124:588–594

    Article  Google Scholar 

  45. Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. Ann CIRP 53(1): 91–94

    Google Scholar 

  46. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites Part II: Workpiece surface integrity. J Mater Process Technol 83: 277–285

    Article  Google Scholar 

  47. Hong SY, Ding Y, Ekkens RG (1999) Improving low carbon steel chip breakability by cryogenic chip cooling. Int J Mach Tools Manuf 39: 1065–1085

    Article  Google Scholar 

  48. Ding X, Liew WYH, Liu XD (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259: 1225–1234

    Article  Google Scholar 

  49. El-Gallab M, Sklad M (1998b) Machining of Al/SiC particulate metal matrix composites. Part II: work surface integrity. J Mater Process Technol 83: 277–285

    Article  Google Scholar 

  50. Cheung CF, Chan KC, To S, Lee WB (2002) Effect of reinforcement in ultra-precision machining of Al6061/SiC metal matrix composites. Scripta Mater 4: 77–82

    Google Scholar 

  51. Sahin Y, Kok M, Celik H (2002) Tool wear and surface roughness of Al2O3 particle-reinforced aluminium alloy composites. J Mater Process Technol 128: 280–291

    Article  Google Scholar 

  52. Monaghan J (1998b) Factors affecting the machinability of Al/SiC metal matrix composites. Key Eng Mater 138–140: 545–574

    Google Scholar 

  53. Lin CB, Hung YW, Liu WC, Kang SW (2001) Machining and Fuidity of 356Al/SiC(p) composites. J Mater Process Technol 110: 152–159

    Article  Google Scholar 

  54. Capello E (2005) Residual stress in turning Part I: Influence of process parameters. J Mater Process Technol 160: 221–228

    Article  Google Scholar 

  55. El-Axir MH (2002) A method of modeling residual stress distribution in turning for different materials. Int J Mach Tools Manuf 42: 1055–1063

    Article  Google Scholar 

  56. Brinksmeier E, Cammett JT, Koenig W, Leskovar P, Peters J, Toenshoff HK (1982) Residual stresses – measurement and causes in machining processes. Ann CIRP 31(2): 491–510

    Google Scholar 

  57. Kannan S, Kishawy HA (2006) Surface characteristics of machined aluminium metal matrix composites. Int J Mach Tools Manuf 46: 2017–2025

    Article  Google Scholar 

  58. Davim JP (2001) Turning particulate metal matrix composites: experimental study of the evolution of the cutting forces, tool wear and workpiece surface roughness with the cutting time. J Eng Manuf Proc Inst Mech Eng 215 B: 371–376

    Article  Google Scholar 

  59. Davim JP, Silva J, Baptista AM (2007b) Experimental cutting model of metal matrix composites (MMCs). J Mater Process Technol 183(2–3): 358–362

    Article  Google Scholar 

  60. Merchant ME (1944) Mechanics of the metal cutting process. I. Orthogonal cutting and type 2 chip. J Appl Phys 16: 267–275

    Article  Google Scholar 

  61. Lee EH, Shaffer BW (1951) The theory of plasticity applied to a problem of machining.J Appl Mech December: 15–20

    Google Scholar 

  62. Kobayashi S, Thomsen EG (1959) Some observations on shearing process in metal cutting. Transactions ASME. J Eng Ind August: 251–261

    Google Scholar 

  63. Pugh HLD (1958) Mechanics of cutting process, Proceedings of Conference on Technology of Engineering Manufacture, The Institute of Mechanical Engineers, p. 237–254

    Google Scholar 

  64. Waldorf DJ (2004) A simplified model for ploughing forces in turning. Trans NAMRI SME 32: 447–454

    Google Scholar 

  65. Yan C, Zhang LC (1995) Single-point scratching of 6061 Al Alloy reinforced by different ceramic particles. Appl Compos Mater 1:431–447

    Article  Google Scholar 

  66. Muller HK, Nau B (1998) Fluid Sealing Technology Marcel Dekker, Chapter 14, p. 294

    Google Scholar 

  67. Yanming Q, Zehua Z (2000) Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites. J Mater Process Technol 100(1): 194–199

    Article  Google Scholar 

  68. Li X, Seah WKH (2001) Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear 247(2): 161–171

    Article  Google Scholar 

  69. Sreejith PS (2006) Tool wear of binderless PCBN tool during machining of particulate reinforced MMC. Tribol Lett 22 (3): 265–269

    Article  Google Scholar 

  70. Chou YK, Liu J (2005) CVD diamond tool performance in metal matrix composite machining. Surf Coatings Technol 200: 1872–1878

    Article  Google Scholar 

  71. Ciftci I, Turker M, Ulvi S (2004) Evaluation of tool wear when machining SiC p reinforced Al-2014 alloy matrix composites. Mater Des 25: 251–255

    Google Scholar 

  72. Varadarajana YS, Vijayaraghavan L, Krishnamurthy R (2006) Performance enhancement through microwave irradiation of K20 carbide tool machining Al/SiC metal matrix composite. J Mater Process Technol 173(2):185–193

    Article  Google Scholar 

  73. Kilickap E, Cakir O, Aksoy M, Inan A (2005) Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. J Mater Process Technol 164–165: 862–867

    Article  Google Scholar 

  74. Hooper RM, Henshall JL, Klopfer A (1999) The wear of polycrystalline diamond tools used in the cutting of metal matrix composites. Int J Refractory Metals Hard Mater 17: 103–109

    Article  Google Scholar 

  75. El-Gallab M, Sklad M (2000) Machining of Al/SiC particulate metal matrix composites part III: comprehensive tool wear models comprehensive tool wear models. J Mater Process Technol 101:10–20

    Article  Google Scholar 

  76. Weinert K (1993) A consideration of tool wear mechanism when machining metal matrix composite (MMC). Ann CIRP 42: 95–98

    Article  Google Scholar 

  77. Andrewes CJE, Feng HY, Lau WM (2000) Machining of an aluminum/SiC composite using diamond inserts. J Mater Process Technol 102: 25–29

    Article  Google Scholar 

  78. D’Errico GE, Calzavarini R (2001) Turning of metal matrix composites. J Mater Process Technol 119: 257–260

    Article  Google Scholar 

  79. Arsecularatne JA, Zhang LC, Montross C (2006) Wear and tool life of tungsten carbide, PCBN and PCD cutting tools. Int J Mach Tools Manuf 46: 482–491

    Article  Google Scholar 

  80. Masounave J, Litwin J, Hamelin D (1994) Prediction of tool life in turning aluminium matrix composites. Mater Des15(5): 287–293

    Google Scholar 

  81. Hung NP, Boey FYC, Khor KA, Phua YS, Lee HF (1996a) Machinability of aluminum alloys reinforced with silicon carbide particulates. J Mater Process Technol 56: 966–977

    Article  Google Scholar 

  82. Hung NP, Zhong CH (1996b) Cumulative tool wear in machining metal matrix composites Part I: Modelling. J Mater Process Technol 58: 109–l 13

    Google Scholar 

  83. Davim JP (2003) Design of optimization of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J Mater Process Technol 132(1–3): 340–344

    Article  Google Scholar 

  84. Kishawy HA, Kannan S, Balazinski M (2005) Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. Ann CIRP, 54(1): 55–58

    Google Scholar 

  85. Kannan S, Kishawy HA, Deiab IM, Surappa MK (2005) Modeling of tool flank wear progression during orthogonal machining of metal matrix composites, Trans North Am Manuf Res Inst SME NAMRC 33: 605–612

    Google Scholar 

  86. Rabinowicz E (1995) Friction and Wear of Materials. Wiley Interscience, 2nd edn, pp. 169–170

    Google Scholar 

  87. Pedersen WE, Ramulu M (2005) Proposed tool wear model for machining particle reinforced metal matrix composites. Trans North Am Manuf Res Inst SME Papers Presented at NAMRC 33: 549–556

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Pramanik, A., Arsecularatne, J., Zhang, L. (2008). Machining of Particulate-Reinforced Metal Matrix Composites. In: Machining. Springer, London. https://doi.org/10.1007/978-1-84800-213-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-213-5_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-212-8

  • Online ISBN: 978-1-84800-213-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics