Skip to main content

Finite Element Modeling of Metal Forming Processes Using Updated Lagrangian Formulation

  • Chapter
Book cover Modeling of Metal Forming and Machining Processes

Part of the book series: Engineering Materials and Processes ((EMP))

  • 3120 Accesses

Abstract

In Chapter 5, we discussed the details of finite element method as well as the finite element modeling of metal forming processes using Eulerian formulation. In this chapter, we extend the finite element technique to the updated Lagrangian formulation. In Eulerian formulation, the domain is a fixed region in space (called control volume). However, in a Lagrangian formulation, the domain consists of a set of material particles that changes its shape continuously with the deformation. The updated Lagrangian formulation is an incremental method in which the domain is updated incrementally. Further, the measure of deformation used in Eulerian formulation is the rate of deformation tensor and the constitutive equation is expressed in terms of the stress and rate of deformation tensors. On the other hand, in updated Lagrangian formulation, the measure of deformation is an incremental strain tensor and the constitutive equation is expressed in terms of the incremental stress and incremental strain tensors. We shall discuss how finite element modeling needs to be modified in the light of these changes in the governing equations. Like that of the Eulerian formulation, the governing equations of the updated Lagrangian formulation also are non-linear and need an iterative scheme to obtain a solution. But the iterative scheme we adopt here is different from that of the previous chapter. However, like in the previous chapter, here also we adopt the Galerkin formulation for developing finite element equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.6 References

  1. Malvern, L.E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  2. Crisfield, M.A. (1991), Non-linear Finite Element Analysis of Solids and Structures, Vol. 1: Essentials, John Wiley and Sons, Chichester.

    Google Scholar 

  3. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall of India, New Delhi.

    Google Scholar 

  4. Altan, T. (1971), Computer simulation to predict load, stress and metal flow in an axisymmetric closed die forging, in A.L. Hoffmanner (Ed.), Metal Forming, Plenum Press, New York, pp. 249–274.

    Google Scholar 

  5. Hill, R., Lee, E.H. and Tupper, S.J. (1923), A method of numerical analysis of plastic flow in plane strain and its application to the compression of a ductile material between rough platens, Transaction of ASME, Journal of Applied Mechanics, Vol. 73, pp. 46–52.

    Google Scholar 

  6. Green, A.P. (1951), A theoretical investigation of the compression of a ductile material between smooth flat dies, Philosphical Magazine, Vol. 42, pp. 900–918.

    Google Scholar 

  7. Kudo, H. (1960), Some analytical and experimental studies of axisymmetric cold forging and extrusion, I and II, International Journal of Mechanical Sciences, Vol. 2, pp. 102–127.

    Article  Google Scholar 

  8. Avitzur, B. (1968), Metal Forming: Processes and Analysis, McGraw-Hill, New York.

    Google Scholar 

  9. Lee, C.H. and Kobayashi, (1971), Analysis of axisymmetric upsetting and plane strain side-pressing of solid cylinders by finite element method, Transaction of ASME Journal of Engineering for Industry, Vol. 93, pp. 445–454.

    Google Scholar 

  10. Shah, S.N., Lee, C.H. and Kobayashi, S. (1974), Compression of tall, circular solid cylinders between parallel flat dies, in: Proceedings of the International Conference on Production Engineering, Tokyo, pp. 295–300.

    Google Scholar 

  11. Chen, C.C. and Kobayashi, S. (1978), Rigid-plastic finite-element analysis of ring compression, in: H. Armen and R.F. Jones, Jr. (Eds.), Application of Numerical Methods to Forming Processes, Proceedings of the Winter Annual Meeting of ASME, AMD, Vol. 28, pp. 163–174.

    Google Scholar 

  12. Oh, S.I. and Kobayashi, S. (1976), Workability of aluminum alloy 7075-t6 in upsetting and rolling, Transaction of ASME, Journal of Engineering for Industry, Vol. 98, pp. 800–806.

    Google Scholar 

  13. Hartley, P., Sturgess, C.E.N. and Rowe, G.W. (1979), Friction in finite element analysis of metal forming process, International Journal of Mechanical Sciences, Vol. 21, pp. 301–311.

    Article  MATH  Google Scholar 

  14. Hartley, P., Sturgess, C.E.N. and Rowe, G.W. (1980), Influence of friction on the prediction of forces, pressure distributions and properties in upset forging, International Journal of Mechanical Sciences, Vol. 22, pp. 743–753.

    Article  MATH  Google Scholar 

  15. Shima, S., Mori, K. and Osakada, K. (1978), Analysis of metal forming by the rigid-plastic finite element method based on plasticity theory for porous metals, in H. Lippmann (Ed.), Metal Forming Plasticity, Springer, Berlin, pp. 305–317.

    Google Scholar 

  16. Kobayashi, S. Oh, S.I. and Altan, T. (1989), Metal Forming and the Finite Element Method, Oxford University Press, New York.

    Google Scholar 

  17. Rowe, G.W., Sturgess, C.E.N., Hartley, P. and Pillinger, I. (1991), Finite Element Plasticity and Metal Forming Analysis, Cambridge University Press, Cambridge.

    Google Scholar 

  18. Hartley, P. and Pillinger, I. and Sturgess, C.E.N. (Eds.) (1992), Numerical Modeling of Material Deformation Processes: Research, Development and Application, Springer, London.

    Google Scholar 

  19. Bathe, K.J., Ramm, E. and Wilson, E.L. (1975), Finite element formulations for large deformation dynamic analysis, International Journal of Numerical Methods for Engineering, Vol. 9, pp. 353–386.

    Article  MATH  Google Scholar 

  20. Dadras, P. and Thomas, J.F. (1983), Analysis of axisymmetric upsetting based on flow pattern observation, International Journal of Mechanical Sciences, Vol. 25, pp. 421–427.

    Article  Google Scholar 

  21. Carter, Jr., W.T. and Lee, D. (1986), Further analysis of axisymmetric upsetting, Transaction of ASME, Journal of Engineering for Industry, Vol. 108, pp. 198–204.

    Google Scholar 

  22. Michel, B. and Boyer, J.C. (1995), Elasto-visco-plastic finite-element analysis of a cold upsetting test and stress-state validation by residual-stress measurements, Journal of Materials Processing Technology, Vol. 54, pp. 120–128.

    Article  Google Scholar 

  23. Zhao, G., Wright, E. and Grandhi, R.V. (1996), Computer aided perform design in forging using the inverse die contact tracking method, International Journal of Machine Tools & Manufacture, Vol. 36, pp. 755–769.

    Article  Google Scholar 

  24. Joun, M.S., Lee, S.W. and Chung, J.H. (1998), Finite element analysis of a multistage axisymmetric forging process, International Journal of Machine Tools & Manufacture, Vol. 38, pp. 843–854.

    Article  Google Scholar 

  25. Kim, H.S., Im, Y.T. and Geiger, M. (1999), Prediction of ductile fracture in cold forging of aluminum alloy, Transaction of ASME, Journal of Manufacturing Science and Engineering, Vol. 121(3), pp. 336–344.

    Article  Google Scholar 

  26. Yang, D.Y., Im, Y.T., Yoo, Y.C., Park, J.J., Kim, J.H., Chun, M.S., Lee, C.H., Lee, Y.K., Park, C.H., Song, J.H., Kim, D.Y., Hong, K.K., Lee, M.C. and Kim, S.I. (2000), Development of integrated and intelligent design and analysis system for forging processes, Annals of CIRP, Vol. 49, pp. 177–180.

    Article  Google Scholar 

  27. Gupta, S., Reddy, N.V. and Dixit, P.M. (2003), Ductile fracture prediction in axisymmetric upsetting using continuum damage mechanics, Journal of Materials Processing Technology, Vol. 141, pp. 256–265.

    Article  Google Scholar 

  28. Mungi, M.P., Rasane, S.D. and Dixit, P.M. (2003), Residual stresses in cold axisymmetric forging, Journal of Materials Processing Technology, Vol. 142, pp. 256–266.

    Article  Google Scholar 

  29. Riks, E. (1972), The application of Newton’s method to the problem of elastic stability, Transaction of ASME, Journal of Applied Mechanics, Vol. 39, pp. 1060–1066.

    MATH  Google Scholar 

  30. Batoz, J.L. and Dhatt, G. (1979), Incremental displacement algorithms for non-linear problems, International Journal of Numerical Methods for Engineering, Vol. 14, pp. 1262–1267.

    Article  MATH  MathSciNet  Google Scholar 

  31. Park, J.J. and Kobayashi, S. (1984), Three-dimensional finite element analysis of block compression, International Journal of Mechanical Sciences, Vol. 26(3), pp. 165–176.

    Article  MATH  Google Scholar 

  32. Lemaitre, J. and Chaboche, J.L. (1990), Mechanics of Solid Materials, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  33. Dhar, S., Sethuraman, R. and Dixit, P.M. (1996), A continuum damage mechanics model for void growth and micro-crack initiation, Engineering Fracture Mechanics, Vol. 53, pp. 917–928.

    Article  Google Scholar 

  34. Reddy, N.V., Dixit, P.M. and Lal, G.K. (1996), Central bursting and optimal die profile for axisymmetric extrusion, Transaction of ASME, Journal of Manufacturing Science and Engineering, Vol. 118, pp. 579–584.

    Article  Google Scholar 

  35. Le Roy, G., Embury, J.D., Edward, G. and Ashby, M.F. (1981), A model of ductile fracture based on the nucleation and growth of voids, Acta Metallurgica, Vol. 29, pp. 1509–1522.

    Article  Google Scholar 

  36. Predeleanu, M., Cordebois, J.P. and Belkhiri, L. (1986), Failure analysis of cold upsetting by computer and experimental simulation, in Proceedings of the NUMIFORM’86 Conference, pp. 277–282.

    Google Scholar 

  37. Kuhn, H.A. and Lee, P.W. (1971), strain instability and fracture at the surface of upset cylinders, Metallurgical Transactions, Vol. 2, pp. 3197–3202.

    Article  Google Scholar 

  38. Kobayashi, S. (1970), Deformation characteristics and ductile fracture of 1040 steel in simple upsetting of solid cylinders and rings, Transaction of ASME, Journal of Engineering for Industry, Vol. 92, pp. 391–399.

    Google Scholar 

  39. Semiatin, S.L., Goetz, T.L., Shell, E.B., Seetharaman, V. and Ghosh, A.K. (1999), Cavitation and failure during hot forging of Ti-6Al-4V, Metallurgical and Materials Transaction A, Vol. 30, pp. 1411–1424.

    Article  Google Scholar 

  40. Johnson, W. and Mellor, P.B. (1972), Engineering Plasticity, von Nostrand Co. Ltd.

    Google Scholar 

  41. Chakrabarty, J. (1987), Theory of Plasticity, McGraw-Hill Book Company, New York.

    Google Scholar 

  42. Toh, C.H. and Kobayashi, S. (1985), Deformation analysis and blank design in square cup drawing, International Journal of Machine Tool Design and Research, Vol. 25, pp. 15–32.

    Article  Google Scholar 

  43. Saran, M.J. and Samuelsson, A. (1990), Elastic-viscoplastic implicit formulation for finite element simulation of complex sheet forming processes, International Journal for Numerical Methods in Engineering, Vol. 30, pp. 1675–1697.

    Article  Google Scholar 

  44. Majlessi, S.A. and Lee, D. (1993), Deep drawing of square-shaped sheet metal parts, part 1: Finite element analysis, Transaction of ASME, Journal of Engineering for Industry, Vol. 115, pp. 102–109.

    Google Scholar 

  45. Onate, E. and Saracibar, C.A.D. (1990), Finite element analysis of sheet metal forming problems using a selective viscous bending/membrane formulation, International Journal for Numerical Methods in Engineering, Vol. 30, pp. 1577–1593.

    Article  Google Scholar 

  46. Chou, C.H., Pan, J. and Tang, S.C. (1994), Analysis of sheet metal forming operations by a stress resultant constitutive law, International Journal for Numerical Methods in Engineering, Vol. 37, pp. 717–735.

    Article  MATH  Google Scholar 

  47. Shi, X., Wei, Y. and Ruan, X. (2001), Simulation of sheet metal forming by a one-step approach: Choice of element, Journal of Materials Processing Technology, Vol. 108, pp. 300–306.

    Article  Google Scholar 

  48. Chou, C.H., Pan, J. and Tang, S.C. (1994), An anisotropic stress resultant constitutive law for sheet metal forming, International Journal for Numerical Methods in Engineering, Vol. 39, pp. 435–449.

    Article  Google Scholar 

  49. Menezes, L.F. and Teodosiu, C. (2000), Three dimensional numerical simulation of deep drawing process using solid finite elements, Journal of Materials Processing Technology, Vol. 97, pp. 100–106.

    Article  Google Scholar 

  50. Colgan, M. and Monaghan, J. (2003), Deep drawing process: Analysis and experiment, Journal of Materials Processing Technology, Vol. 132, pp. 35–41.

    Article  Google Scholar 

  51. Osakada, K., Wang, C.C. and Mori, K.I. (1995), Controlled FEM simulation for determining history of blank holding force in deep drawing, Annals of CIRP, Vol. 44, pp. 243–246.

    Google Scholar 

  52. Lorenzo, R.D., Fratini, L. and Micari, F. (1999), Optimal blank holder force path in sheet metal forming processes: an AI based procedure, Annals of CIRP, Vol. 48, pp. 231–234.

    Google Scholar 

  53. Guo, Y.Q., Batoz, J.L., Detraux, J.M. and Duroux, P. (1990), Finite element procedures for strain estimation of sheet metal forming parts, Annals of CIRP, Vol. 30, pp. 1385–1401.

    MATH  Google Scholar 

  54. Kim, S.H. and Huh, H. (2001), Finite element inverse analysis for the design of intermediate dies in multi-stage deep drawing with large aspect ratio, Journal of Materials Processing Technology, Vol. 113, pp. 779–785.

    Article  Google Scholar 

  55. Ku, T.W., Lim, H.J., Choi, H.H., Hwang, S.M. and Kang, B.S. (2001), Implementation of backward tracing scheme of the FEM to blank design in sheet metal forming, Journal of Materials Processing Technology, Vol. 111, pp. 90–97.

    Article  Google Scholar 

  56. Pegada, V.P., Chun, Y. and Santhanam, S. (2002), An algorithm for determining the optimum blank shape for deep drawing of aluminum cups, Journal of Materials Processing Technology, Vol. 125/126, pp. 743–750.

    Article  Google Scholar 

  57. Chakka, V.M. (2006), Optimum Blank Shape Design for Cylindrical Cup Drawing Using Finite Element Method, M.Tech. Thesis, Department of Mechanical Engineering, Indian Institute of Technology Kanpur.

    Google Scholar 

  58. Raja, S. (2007), Optimum Blank Shape Design for Cylindrical Cup Drawing Using Various Anisotropic Criteria, M.Tech. Thesis, Department of Mechanical Engineering, Indian Institute of Technology Kanpur.

    Google Scholar 

  59. Yoon, J.W., Barlat, F., Dick, R.E. and Karabin, M.E. (2006), Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function, International Journal of Plasticity, Vol. 22, pp. 174–193.

    Article  MATH  Google Scholar 

  60. Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C. and Dick, R.E. (2005), Linear transformation-based anisotropic yield functions, International Journal of Plasticity, Vol. 21, pp. 1009–1039.

    Article  MATH  Google Scholar 

  61. Yoon, J.W., Barlat, F., Gracio, J.J. and Rauch, E. (2005), Anisotropic strain hardening behavior in simple shear for cube textured aluminum alloy sheets, International Journal of Plasticity, Vol. 21, pp. 2426–2447.

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Finite Element Modeling of Metal Forming Processes Using Updated Lagrangian Formulation. In: Modeling of Metal Forming and Machining Processes. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84800-189-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-189-3_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-188-6

  • Online ISBN: 978-1-84800-189-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics