Skip to main content
  • 2473 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dahl M. Clinical Immunodermatology, 3rd ed. St. Louis: Mosby, 1996.

    Google Scholar 

  2. Kumar V, Abbas A, Fausto N, eds. Robbins ' Cotran Pathologic Basis of Disease. Philadelphia: Elsevier Saunders, 2005:82–83.

    Google Scholar 

  3. Lu K, McCormick T, Gillam A, Kang K, Cooper K. Monocytes and macrophages in human skin. In: Bos JD, ed. Skin Immune System, 3rd ed. Boca Raton, FL: CRC Press, 2005.

    Google Scholar 

  4. Pluddemann A, Mukhopadhyay S, Gordon S. The interaction of macrophage receptors with bacterial ligands. Expert Rev Mol Med 2006;8:1–25.

    Article  PubMed  Google Scholar 

  5. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001;2:675–80.

    Article  PubMed  CAS  Google Scholar 

  6. Stout RD, Suttles J. Functional plasticity of macro-phages: reversible adaptation to changing microenvi-ronments. J Leukoc Biol 2004;76:509–13.

    Article  PubMed  CAS  Google Scholar 

  7. Fogg DK, Sibon C, Miled C, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006;311:83–7.

    Article  PubMed  CAS  Google Scholar 

  8. Hume DA. The mononuclear phagocyte system. Curr Opin Immunol 2006;18:49–53.

    Article  PubMed  CAS  Google Scholar 

  9. Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 2006;27:244–50.

    Article  PubMed  CAS  Google Scholar 

  10. Krysko DV, Denecker G, Festjens N, et al. Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Differ 2006;13:2011–22.

    Article  PubMed  CAS  Google Scholar 

  11. Krysko DV, D'Herde K, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 2006;11:1709–26.

    Article  PubMed  Google Scholar 

  12. Anderson JM. Multinucleated giant cells. Curr Opin Hematol 2000;7:40–7.

    Article  PubMed  CAS  Google Scholar 

  13. Gasser A, Most J. Generation of multinucleated giant cells in vitro by culture of human monocytes with Mycobacterium bovis BCG in combination with cytokine-containing supernatants. Infect Immun 1999;67:395–402.

    PubMed  CAS  Google Scholar 

  14. Weinberg JB, Hobbs MM, Misukonis MA. Recomhuman gamma-interferon induces human monocyte polykaryon formation. Proc Natl Acad Sci USA 1984;81:4554–7.

    Article  PubMed  CAS  Google Scholar 

  15. Vignery A. Macrophage fusion: the making of osteo-clasts and giant cells. J Exp Med 2005;202:337–40.

    Article  PubMed  CAS  Google Scholar 

  16. Yagi M, Miyamoto T, Sawatani Y, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 2005;202:345–51.

    Article  PubMed  CAS  Google Scholar 

  17. Kyriakides TR, Foster MJ, Keeney GE, et al. The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell formation. Am J Pathol 2004;165:2157–66.

    PubMed  CAS  Google Scholar 

  18. Zhu XW, Friedland JS. Multinucleate giant cells and the control of chemokine secretion in response to Mycobacterium tuberculosis. Clin Immunol 2006;120:10–20.

    Article  PubMed  CAS  Google Scholar 

  19. Sadek MI, Sada E, Toossi Z, Schwander SK, Rich EA. Chemokines induced by infection of mononu-clear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am J Respir Cell Mol Biol 1998;19:513–21.

    PubMed  CAS  Google Scholar 

  20. Kurashima K, Mukaida N, Fujimura M, et al. Elevated chemokine levels in bronchoalveolar lavage fluid of tuberculosis patients. Am J Respir Crit Care Med 1997;155:1474–7.

    PubMed  CAS  Google Scholar 

  21. Algood HM, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev 2003;14:467–77.

    Article  PubMed  CAS  Google Scholar 

  22. Bergeron A, Bonay M, Kambouchner M, et al. Cytokine patterns in tuberculous and sarcoid granulo-mas: correlations with histopathologic features of the granulomatous response. J Immunol 1997;159:3034–43.

    PubMed  CAS  Google Scholar 

  23. Salgame P. Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol 2005;17:374–80.

    Article  PubMed  CAS  Google Scholar 

  24. Feng CG, Scanga CA, Collazo-Custodio CM, et al. Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J Immunol 2003;171:4758–64.

    PubMed  CAS  Google Scholar 

  25. Scanga CA, Bafica A, Feng CG, Cheever AW, Hieny S, Sher A. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun 2004;72:2400–4.

    Article  PubMed  CAS  Google Scholar 

  26. Layland LE, Wagner H, da Costa CU. Lack of antigen-specific Th1 response alters granuloma formation and composition in Schistosoma mansoni-infected MyD88-/- mice. Eur J Immunol 2005;35:3248–57.

    Article  PubMed  CAS  Google Scholar 

  27. Bulut Y, Michelsen KS, Hayrapetian L, et al. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 2005;280:20961–7.

    Article  PubMed  CAS  Google Scholar 

  28. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993;178:2243–7.

    Article  PubMed  CAS  Google Scholar 

  29. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993;178:2249–54.

    Article  PubMed  CAS  Google Scholar 

  30. Bean AG, Roach DR, Briscoe H, et al. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 1999;162:3504–11.

    PubMed  CAS  Google Scholar 

  31. Flynn JL, Goldstein MM, Chan J, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 1995;2:561–72.

    Article  PubMed  CAS  Google Scholar 

  32. Kahnert A, Seiler P, Stein M, et al. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. Eur J Immunol 2006;36:631–47.

    Article  PubMed  CAS  Google Scholar 

  33. Gronski TJ Jr, Martin RL, Kobayashi DK, et al. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J Biol Chem 1997;272:12189–94.

    Article  PubMed  CAS  Google Scholar 

  34. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD. Metalloelastase is required for mac-rophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA 1996;93:3942–6.

    Article  PubMed  CAS  Google Scholar 

  35. Vaalamo M, Kariniemi AL, Shapiro SD, Saarialho-Kere U. Enhanced expression of human metal-loelastase (MMP-12) in cutaneous granulomas and macrophage migration. J Invest Dermatol 1999;112:499–505.

    Article  PubMed  CAS  Google Scholar 

  36. Orme IM. The mouse as a useful model of tuberculosis. Tuberculosis (Edinb) 2003;83:112–5.

    Article  CAS  Google Scholar 

  37. Pozos TC, Ramakrishnan L. New models for the study of Mycobacterium-host interactions. Curr Opin Immunol 2004;16:499–505.

    Article  PubMed  CAS  Google Scholar 

  38. Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of myco-bacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002;17:693–702.

    Article  PubMed  CAS  Google Scholar 

  39. Newman LS, Rose CS, Maier LA. Sarcoidosis. N Engl J Med 1997;336:1224–34.

    Article  PubMed  CAS  Google Scholar 

  40. Braverman I. In: Freedberg I, Eisen A, Wolff K, Austen K, Goldsmith L, Katz S, eds. Sarcoidosis. Fitzpatrick's Dermatology in General Medicine, 6th ed. New York: McGraw-Hill, 2003:1781.

    Google Scholar 

  41. Mana J, Gomez-Vaquero C, Montero A, et al. Lofgren's syndrome revisited: a study of 186 patients. Am J Med 1999;107:240–5.

    Article  PubMed  CAS  Google Scholar 

  42. Veien NK, Stahl D, Brodthagen H. Cutaneous sarcoidosis in Caucasians. J Am Acad Dermatol 1987;16:534–40.

    Article  PubMed  CAS  Google Scholar 

  43. Hanno R, Needelman A, Eiferman RA, Callen J P. Cutaneous sarcoidal granulomas and the development of systemic sarcoidosis. Arch Dermatol 1981;117:203–7.

    Article  PubMed  CAS  Google Scholar 

  44. Mana J, Marcoval J, Graells J, Salazar A, Peyri J, Pujol R. Cutaneous involvement in sarcoidosis. Relationship to systemic disease. Arch Dermatol 1997;133:882–8.

    Article  PubMed  CAS  Google Scholar 

  45. Yanardag H, Pamuk ON, Karayel T. Cutaneous involvement in sarcoidosis: analysis of the features in 170 patients. Respir Med 2003;97:978–82.

    Article  PubMed  Google Scholar 

  46. Ahmed I, Harshad SR. Subcutaneous sarcoidosis: is it a specific subset of cutaneous sarcoidosis frequently associated with systemic disease? J Am Acad Dermatol 2006;54:55–60.

    Article  PubMed  Google Scholar 

  47. Mangas C, Fernandez-Figueras MT, Fite E, Fernandez-Chico N, Sabat M, Ferrandiz C. Clinical spectrum and histological analysis of 32 cases of specific cutaneous sarcoidosis. J Cutan Pathol 2006;33:772–7.

    Article  PubMed  Google Scholar 

  48. James DG. Sarcoidosis: milestones to the millennium. Sarcoidosis Vasc Diffuse Lung Dis 1999;16:174–82.

    PubMed  CAS  Google Scholar 

  49. Neville E, Mills RG, Jash DK, Mackinnon DM, Carstairs LS, James DG. Sarcoidosis of the upper respiratory tract and its association with lupus pernio. Thorax 1976;31:660–4.

    Article  PubMed  CAS  Google Scholar 

  50. Aubart FC, Ouayoun M, Brauner M, et al. Sinonasal involvement in sarcoidosis: a case-control study of 20 patients. Medicine (Baltimore) 2006;85:365–71.

    Article  Google Scholar 

  51. Yanardag H, Pamuk ON. Bone cysts in sarcoidosis: what is their clinical significance? Rheumatol Int 2004;24:294–6.

    Article  PubMed  Google Scholar 

  52. Kindler V, Sappino AP, Grau GE, Piguet PF, Vassalli P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 1989;56:731–40.

    Article  PubMed  CAS  Google Scholar 

  53. Agostini C, Semenzato G. Cytokines in sarcoidosis. Semin Respir Infect 1998;13:184–96.

    PubMed  CAS  Google Scholar 

  54. Xaus J, Besalduch N, Comalada M, et al. High expression of p21 Waf1 in sarcoid granulomas: a putative role for long-lasting inflammation. J Leukoc Biol 2003;74:295–301.

    Article  PubMed  CAS  Google Scholar 

  55. Teirstein AS. The Kveim-Siltzbach test. Clin Dermatol 1986;4:154–64.

    Article  PubMed  CAS  Google Scholar 

  56. James DG, Williams WJ. Kveim-Siltzbach test revisited. Sarcoidosis 1991;8:6–9.

    PubMed  CAS  Google Scholar 

  57. Siltzbach LE. The Kveim test in sarcoidosis. A study of 750 patients. JAMA 1961;178:476–82.

    PubMed  CAS  Google Scholar 

  58. Song Z, Marzilli L, Greenlee BM, et al. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoido-sis. J Exp Med 2005;201:755–67.

    Article  PubMed  CAS  Google Scholar 

  59. Moller DR, Konishi K, Kirby M, Balbi B, Crystal RG. Bias toward use of a specific T cell receptor beta-chain variable region in a subgroup of individuals with sarcoidosis. J Clin Invest 1988;82:1183–91.

    Article  PubMed  CAS  Google Scholar 

  60. Di Alberti L, Piattelli A, Artese L, et al. Human herpesvirus 8 variants in sarcoid tissues. Lancet 1997;350:1655–61.

    Article  PubMed  Google Scholar 

  61. Belec L, Mohamed AS, Lechapt-Zalcman E, Authier FJ, Lange F, Gherardi RK. Lack of HHV-8 DNA sequences in sarcoid tissues of French patients. Chest 1998;114:948–9.

    Article  PubMed  CAS  Google Scholar 

  62. Maeda H, Niimi T, Sato S, et al. Human herpesvi-rus 8 is not associated with sarcoidosis in Japanese patients. Chest 2000;118:923–7.

    Article  PubMed  CAS  Google Scholar 

  63. Knoell KA, Hendrix JD, Jr., Stoler MH, Patterson JW, Montes CM. Absence of human herpesvirus 8 in sarcoidosis and Crohn disease granulomas. Arch Dermatol 2005;141:909–10.

    Article  PubMed  Google Scholar 

  64. Saboor SA, Johnson NM, McFadden J. Detection of mycobacterial DNA in sarcoidosis and tuberculosis with polymerase chain reaction. Lancet 1992;339:1012–5.

    Article  PubMed  CAS  Google Scholar 

  65. Ikonomopoulos JA, Gorgoulis VG, Zacharatos PV, et al. Multiplex polymerase chain reaction for the detection of mycobacterial DNA in cases of tuberculosis and sarcoidosis. Mod Pathol 1999;12:854–62.

    PubMed  CAS  Google Scholar 

  66. Eishi Y, Suga M, Ishige I, et al. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J Clin Microbiol 2002;40:198–204.

    Article  PubMed  CAS  Google Scholar 

  67. Marcoval J, Benitez MA, Alcaide F, Mana J. Absence of ribosomal RNA of Mycobacterium tuberculosis complex in sarcoidosis. Arch Dermatol 2005;141:57–9.

    Article  PubMed  CAS  Google Scholar 

  68. Milman N, Lisby G, Friis S, Kemp L. Prolonged culture for mycobacteria in mediastinal lymph nodes from patients with pulmonary sarcoidosis. A negative study. Sarcoidosis Vasc Diffuse Lung Dis 2004;21:25–8.

    PubMed  Google Scholar 

  69. Prezant DJ, Dhala A, Goldstein A, et al. The incidence, prevalence, and severity of sarcoidosis in New York City firefighters. Chest 1999;116:1183–93.

    Article  PubMed  CAS  Google Scholar 

  70. Sarcoidosis among U.S. Navy enlisted me, 1965–1993. MMWR Morb Mortal Wkly Rep 1997;46:539–43.

    Google Scholar 

  71. Parkes SA, Baker SB, Bourdillon RE, Murray CR, Rakshit M. Epidemiology of sarcoidosis in the Isle of Man—1: a case controlled study. Thorax 1987;42:420–6.

    PubMed  CAS  Google Scholar 

  72. Newman LS, Rose CS, Bresnitz EA, et al. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med 2004;170:1324–30.

    Article  PubMed  Google Scholar 

  73. Valeyre D, Soler P, Clerici C, et al. Smoking and pulmonary sarcoidosis: effect of cigarette smoking on prevalence, clinical manifestations, alveolitis, and evolution of the disease. Thorax 1988;43:516–24.

    PubMed  CAS  Google Scholar 

  74. Douglas JG, Middleton WG, Gaddie J, et al. Sarcoidosis: a disorder commoner in non-smokers? Thorax 1986;41:787–91.

    PubMed  CAS  Google Scholar 

  75. Ianuzzi MC, Rybicki BA. Genetics of sarcoidosis: candidate genes and genome scans. Proc Am Thorac Soc 2007;4:108–16.

    Article  CAS  Google Scholar 

  76. Miceli-Richard C, Lesage S, Rybojad M, et al. CARD15 mutations in Blau syndrome. Nat Genet 2001;29:19–20.

    Article  PubMed  CAS  Google Scholar 

  77. Inohara N, Ogura Y, Fontalba A, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem 2003;278:5509–12.

    Article  PubMed  CAS  Google Scholar 

  78. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001;411:599–603.

    Article  PubMed  CAS  Google Scholar 

  79. Kanazawa N, Okafuji I, Kambe N, et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 2005;105:1195–7.

    Article  PubMed  CAS  Google Scholar 

  80. Rybicki BA, Maliarik MJ, Poisson LM, Iannuzzi MC. Sarcoidosis and granuloma genes: a family-based study in African-Americans. Eur Respir J 2004;24:251–7.

    Article  PubMed  CAS  Google Scholar 

  81. Thomas KW, Hunninghake GW. Sarcoidosis. JAMA 2003;289:3300–3.

    Article  PubMed  Google Scholar 

  82. Capelli A, Di Stefano A, Lusuardi M, Gnemmi I, Donner CF. Increased macrophage inflammatory protein-1alpha and macrophage inflammatory protein-1beta levels in bronchoalveolar lavage fluid of patients affected by different stages of pulmonary sarcoidosis. Am J Respir Crit Care Med 2002;165:236–41.

    PubMed  Google Scholar 

  83. Morohashi K, Takada T, Omori K, Suzuki E, Gejyo F. Vascular endothelial growth factor gene polymorphisms in Japanese patients with sarcoidosis. Chest 2003;123:1520–6.

    Article  PubMed  CAS  Google Scholar 

  84. Rybicki BA, Hirst K, Iyengar SK, et al. A sarcoidosis genetic linkage consortium: the sarcoidosis genetic analysis (SAGA) study. Sarcoidosis Vasc Diffuse Lung Dis 2005;22:115–22.

    PubMed  Google Scholar 

  85. Judson MA, Hirst K, Iyengar SK, et al. Comparison of sarcoidosis phenotypes among affected African-American siblings. Chest 2006;130:855–62.

    Article  PubMed  Google Scholar 

  86. Iannuzzi MC, Iyengar SK, Gray-McGuire C, et al. Genome-wide search for sarcoidosis susceptibility genes in African Americans. Genes Immun 2005;6:509–18.

    Article  PubMed  CAS  Google Scholar 

  87. Moller DR. Cells and cytokines involved in the pathogenesis of sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 1999;16:24–31.

    PubMed  CAS  Google Scholar 

  88. Robinson BW, McLemore TL, Crystal RG. Gamma interferon is spontaneously released by alveolar mac rophages and lung T lymphocytes in patients with pulmonary sarcoidosis. J Clin Invest 1985;75:1488–95.

    Article  PubMed  CAS  Google Scholar 

  89. Tannenbaum H, Rocklin RE, Schur PH, Sheffer AL. Immune function in sarcoidosis. Studies on delayed hypersensitivity, B and T lymphocytes, serum immu-noglobulins and serum complement components. Clin Exp Immunol 1976;26:511–9.

    PubMed  CAS  Google Scholar 

  90. Kataria YP, Holter JF. Immunology of sarcoidosis. Clin Chest Med 1997;18:719–39.

    Article  PubMed  CAS  Google Scholar 

  91. Cosemans J, Louwagie AC. Tuberculin and DNCB skin tests and in vitro lymphocyte transformation in patients with sarcoidosis. Acta Clin Belg 1979;34:353–9.

    PubMed  CAS  Google Scholar 

  92. Morell F, Levy G, Orriols R, Ferrer J, De Gracia J, Sampol G. Delayed cutaneous hypersensitivity tests and lymphopenia as activity markers in sarcoidosis. Chest 2002;121:1239–44.

    Article  PubMed  Google Scholar 

  93. Miyara M, Amoura Z, Parizot C, et al. The immune paradox of sarcoidosis and regulatory T cells. J Exp Med 2006;203:359–70.

    Article  PubMed  Google Scholar 

  94. Knight AK, Cunningham-Rundles C. Inflammatory and autoimmune complications of common variable immune deficiency. Autoimmun Rev 2006;5:156–9.

    Article  PubMed  CAS  Google Scholar 

  95. Baughman RP, Lower EE. Newer therapies for cutaneous sarcoidosis: the role of thalidomide and other agents. Am J Clin Dermatol 2004;5:385–94.

    Article  PubMed  Google Scholar 

  96. Burgdorf W. Cutaneous manifestations of Crohn's disease. J Am Acad Dermatol 1981;5:689–95.

    Article  PubMed  CAS  Google Scholar 

  97. Witkowski JA, Parish LC, Lewis JE. Crohn's disease— non-caseating granulomas on the legs. Acta Derm Venereol 1977;57:181–3.

    PubMed  CAS  Google Scholar 

  98. Hackzell-Bradley M, Hedblad MA, Stephansson EA. Metastatic Crohn's disease. Report of 3 cases with special reference to histopathologic findings. Arch Dermatol 1996;132:928–32.

    Article  PubMed  CAS  Google Scholar 

  99. Crowson AN, Nuovo GJ, Mihm MC, Jr., Magro C. Cutaneous manifestations of Crohn's disease, its spectrum, and its pathogenesis: intracellular consensus bacterial 16S rRNA is associated with the gastrointestinal but not the cutaneous manifestations of Crohn's disease. Hum Pathol 2003;34:1185–92.

    Article  PubMed  CAS  Google Scholar 

  100. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001;411:603–6.

    Article  PubMed  CAS  Google Scholar 

  101. Marks DJ, Harbord MW, MacAllister R, et al. Defective acute inflammation in Crohn's disease: a clinical investigation. Lancet 2006;367:668–78.

    Article  PubMed  CAS  Google Scholar 

  102. Toro JR, Chu P, Yen TS, LeBoit PE. Granuloma annulare and human immunodeficiency virus infection. Arch Dermatol 1999;135:1341–6.

    Article  PubMed  CAS  Google Scholar 

  103. Li A, Hogan DJ, Sanusi ID, Smoller BR. Granuloma annulare and malignant neoplasms. Am J Dermatopathol 2003;25:113–6.

    Article  PubMed  Google Scholar 

  104. Muhlbauer JE. Granuloma annulare. J Am Acad Dermatol 1980;3:217–30.

    Article  PubMed  CAS  Google Scholar 

  105. Stollerman GH. Rheumatic fever. Lancet 1997;349:935–42.

    Article  PubMed  CAS  Google Scholar 

  106. Liu SC, Chang TY, Lee YJ, et al. Influence of HLA-DRB1 genes and the shared epitope on genetic susceptibility to rheumatoid arthritis in Taiwanese. J Rheumatol 2007.

    Google Scholar 

  107. Wordsworth BP, Lanchbury JS, Sakkas LI, Welsh KI, Panayi GS, Bell JI. HLA-DR4 subtype frequencies in rheumatoid arthritis indicate that DRB1 is the major susceptibility locus within the HLA class II region. Proc Natl Acad Sci USA 1989;86:10049–53.

    Article  PubMed  CAS  Google Scholar 

  108. Moreno I, Valenzuela A, Garcia A, Yelamos J, Sanchez B, Hernanz W. Association of the shared epitope with radiological severity of rheumatoid arthritis. J Rheumatol 1996;23:6–9.

    PubMed  CAS  Google Scholar 

  109. De Rycke L, Peene I, Hoffman IE, et al. Rheumatoid factor and anticitrullinated protein antibodies in rheumatoid arthritis: diagnostic value, associations with radiological progression rate, and extra-articular manifestations. Ann Rheum Dis 2004;63:1587–93.

    Article  PubMed  CAS  Google Scholar 

  110. Schellekens GA, Visser H, de Jong BA, et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 2000;43:155–63.

    Article  PubMed  CAS  Google Scholar 

  111. Bongartz T, Cantaert T, Atkins SR, et al. Citrullination in extra-articular manifestations of rheumatoid arthritis. Rheumatology (Oxford) 2007;46:70–5.

    Article  CAS  Google Scholar 

  112. Hill JA, Southwood S, Sette A, Jevnikar AM, Bell DA, Cairns E. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 2003;171:538–41.

    PubMed  CAS  Google Scholar 

  113. Vossenaar ER, Radstake TR, van der Heijden A, et al. Expression and activity of citrullinat-ing peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis 2004;63:373–81.

    Article  PubMed  CAS  Google Scholar 

  114. Ireland J, Herzog J, Unanue ER. Cutting edge: unique T cells that recognize citrullinated peptides are a feature of protein immunization. J Immunol 2006;177:1421–5.

    PubMed  CAS  Google Scholar 

  115. Ullman S, Dahl M V. Necrobiosis lipoidica. An immunofluorescence study. Arch Dermatol 1977;113:1671–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Lu, K.Q. (2008). Granulomatosis. In: Gaspari, A.A., Tyring, S.K. (eds) Clinical and Basic Immunodermatology. Springer, London. https://doi.org/10.1007/978-1-84800-165-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-165-7_37

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-164-0

  • Online ISBN: 978-1-84800-165-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics