Skip to main content

Contact Dermatitis: Allergic and Irritant

  • Chapter
Clinical and Basic Immunodermatology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mathias C. The cost of occupational disease. Arch Dermatol 1985;121:332–4.

    PubMed  CAS  Google Scholar 

  2. Scheynius A, Fischer T, Forsum U, et al. Phenotypic characterization in situ of inflammatory cells in allergic and irritant contact dermatitis in vivo. Clin Exp Immunol 1984;55:81–90.

    PubMed  CAS  Google Scholar 

  3. Scheynius A, Fischer T. Phenotypic differences between allergic and irritant patch test reactions in man. Contact Dermatitis 1986;14:297–302.

    PubMed  CAS  Google Scholar 

  4. Willis CM, Young E, Brandon DR, et al. Immunopathological findings in human allergic and irritant contact dermatitis. Br J Dermatol 1986;115:305–16.

    PubMed  CAS  Google Scholar 

  5. Willis CM, Stephens CJM, Wilkinson JD. Epidermal damage induced by irritants in man: a light and electron microscopic study. J Invest Dermatol 1989;93:695–99.

    PubMed  CAS  Google Scholar 

  6. Brasch J, Burgard J, Sterry W. Common pathological pathways in allergic and irritant contact dermatitis. J Invest Dermatol 1992;98:166–70.

    PubMed  CAS  Google Scholar 

  7. Medenica M, Rostenberg A Jr. A comparative light and electron microscopic study of primary irritant contact dermatitis and allergic. Contact Dermatitis 1971;56:259–71.

    CAS  Google Scholar 

  8. Le TKM, van der Valk PGM, Schwalkwijk J, et al. Changes in epidermal proliferation and differentiation in allergic and irritant contact dermatitis reactions. Br J Dermatol 1995;133:236–40.

    Google Scholar 

  9. Landsteiner K, Chase MW. Studies on the sensitization of animals with simple chemical compounds. IX. Skin sensitization induced by injection of conjugates. J Exp Med 1941;73:431–6.

    CAS  Google Scholar 

  10. Warshaw EM, Belsito DV, DeLeo VA , et al. North American Contact Dermatitis Group Patch Test Results: 2003–2004 Study Period. Dermatitis (in press).

    Google Scholar 

  11. Dupuis G, Benezra C. Allergic Contact Dermatitis to Simple Chemicals: A Molecular Approach. New York: Marcel Dekker, 1982.

    Google Scholar 

  12. Saloga J, Knop J, Kolde G. Ultrastructural cytochemical visualization of chromium in the skin of sensitized guinea pigs. Arch Dermatol Res 1988;280:214–19.

    PubMed  CAS  Google Scholar 

  13. deGroot AC. Patch Testing: Test Concentrations and Vehicles for 3700 Chemicals. Amsterdam: Elsevier, 1994.

    Google Scholar 

  14. Parker D, Long PV, Turk JL. A comparison of the conjugation of DNTB and other dinitrobenzenes with free protein radicals and their ability to sensitize or tolerize. J Invest Dermatol 1983;81:198–201.

    PubMed  CAS  Google Scholar 

  15. Anderson C, Hehr A, Robbins R, et al. Metabolic requirements for induction of contact hypersensitivity to immunotoxic polyaromatic hydrocarbons. J Immunol 1995;155:3530–7.

    PubMed  CAS  Google Scholar 

  16. Katz DH, Davie JM, Paul WE, et al. Carrier function in anti-hapten antibody responses. I V. Experimental conditions for the induction of hapten-specific tolerance or for the stimulation of anti-hapten anamnestic responses by “non-immunogenic” hapten polypep-tide conjugates. J Exp Med 1971;134:201–23.

    PubMed  CAS  Google Scholar 

  17. Nalefski EA, Rao A:Nature of the ligand recognized by a hapten- and carrier-specific, MHC-restricted T cell receptor. J Immunol 1993;150:3806–16.

    PubMed  CAS  Google Scholar 

  18. Martin S, Ortman B, Plugfelder U, et al. Role of hapten-anchoring peptides in defining hapten-epitopes for MHC-restricted cytotoxic T cells. Cross-reactive TNP-determinants on different peptides. J Immunol 1992;149:2569–75.

    PubMed  CAS  Google Scholar 

  19. Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 1979;282:324–6.

    PubMed  CAS  Google Scholar 

  20. Stingl G, Maurer D, Hauser C, et al. The Skin: an immunologic barrier. In: Freedberg IM, Eisen AZ, Wolff K, et al., eds. Fitzpatrick's Dermatology in General Medicine, 6th ed. New York: McGraw-Hill, 2003:253–73.

    Google Scholar 

  21. Mommaas AM, Mulder AA, Out CJ, et al. Distribution of HLA class II molecules in epidermal Langerhans cells in situ. Eur J Immunol 1995;25:520–5.

    PubMed  CAS  Google Scholar 

  22. Sallusto F, Cella M, Danieli C, et al. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995;182:389–400.

    PubMed  CAS  Google Scholar 

  23. Girolomoni G, Stone DK, Bergstresser PR, et al. Vacuolar acidification and bafilomycin-sensitive proton translocating ATPase in human epidermal Langerhans cells. J Invest Dermatol 1991:96: 735–41.

    PubMed  CAS  Google Scholar 

  24. Silberberg-Sinakin I, Thorbecke GJ, Baer RL, et al. Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell Immunol 1976;25:137–51.

    PubMed  CAS  Google Scholar 

  25. Macatonia SE, Edwards AJ, Knight SC, et al. Dendritic cells and the initiation of contact sensitivity to fluorescein isothiocyanate. Immunology 1986;59:509–14.

    PubMed  CAS  Google Scholar 

  26. Enk AH, Katz SI. Early molecular events in the induction phase of contact sensitivity. Proc Natl Acad Sci USA 1992;89:1398–402.

    PubMed  CAS  Google Scholar 

  27. Enk AH, Angeloni VL, Udey MC, et al. An essential role for Langerhans cell-derived IL-1 beta in the initiation of primary immune responses in skin. J Immunol 1993;150:3698–704.

    PubMed  CAS  Google Scholar 

  28. Wang B, Kondo S, Shivji GM, et al:Tumour necrosis factor receptor II (p75) signalling is required for the migration of Langerhans' cells. Immunology 1996;88:284–8.

    PubMed  CAS  Google Scholar 

  29. Dieu MC, Vanbervliet B, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998;188:373–86.

    PubMed  CAS  Google Scholar 

  30. Kobayashi Y, Matsumoto M, Kotani M, et al. Possible involvement of matrix metalloproteinase9 in Langerhans cell migration and maturation. J Immunol 1999;163:5989–93.

    PubMed  CAS  Google Scholar 

  31. Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation. Nat Immunol 2001;2:102–7.

    PubMed  CAS  Google Scholar 

  32. Scandella E, Men Y, Gillessen S, et al. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 2002;100:1354–61.

    PubMed  CAS  Google Scholar 

  33. Ngo VN, Korner H, Gunn MD, et al. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 1999;189:403–12.

    PubMed  CAS  Google Scholar 

  34. Engeman TM, Gorbachev AV, Gladue RP, et al. Inhibition of functional T cell priming and contact hypersensitivity responses by treatment with antisecondary lymphoid chemokine antibody during hapten sensitization. J Immunol 2000;164:5207–14.

    PubMed  CAS  Google Scholar 

  35. Martin-Fontecha A, Sebastiani S, Hopken UE, et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 2003;198:615–21.

    PubMed  CAS  Google Scholar 

  36. Reynolds NJ, Yi JY, Fisher GJ et al. Down-regulation of Langerhans cell protein kinase C-beta isoenzyme expression in inflammatory and hyperplastic dermatoses. Br J Dermatol 1995;133:157–67.

    PubMed  CAS  Google Scholar 

  37. Kuhlman P, Moy VT, Lollo BA, et al. The accessory function of murine intercellular adhesion molecule-1 in T lymphocyte activation: contributions of adhesion and coactivation. J Immunol 1991;146:1773–82.

    PubMed  CAS  Google Scholar 

  38. Prens EP, Benne K, Van Joost T, et al. Differential role of lymphocyte function-associated antigens in the activation of nickel-specific peripheral blood T lymphocytes. J Invest Dermatol 1991;97:885–91.

    PubMed  CAS  Google Scholar 

  39. Rattis FM, Péguet-Navarro J, Staquet MJ, et al. Expression and function of B7–1 (CD80) and B7–2 (CD86) on human epidermal Langerhans cells. Eur J Immunol 1996;26:449–53.

    PubMed  CAS  Google Scholar 

  40. Ozawa H, Nakagawa S, Tagami H, et al. Interleukin1 beta and granulocyte-macrophage colony-stimulating factor mediate Langerhans cell maturation differently. J Invest Dermatol 1996;106:441–5.

    PubMed  CAS  Google Scholar 

  41. Péguet-Navarro J, Dalbiez-Gauthier C, Rattis FM, et al. Functional expression of CD40 antigen on human epidermal Langerhans cells. J Immunol 1995;155:4241–7.

    PubMed  Google Scholar 

  42. Chen AI, McAdam AJ, Buhlmann JE, et al. Ox40–ligand has a critical costimulatory role in dendritic cell: T cell interactions. Immunity 1999;11:689–98.

    PubMed  CAS  Google Scholar 

  43. Adema GJ, Hartgers F, Verstraten R, et al. A dendritic-cell-driven C-C chemokine that preferentially attracts naïve T cells. Nature 1997;387:713–7.

    PubMed  CAS  Google Scholar 

  44. Kalish RS, Askenase PW. Molecular mechanisms of CD8+ T cell-mediated delayed hypersensitivity: implications for allergies, asthma, and autoimmunity. J Allergy Clin Immunol 1999;103:192–9.

    PubMed  CAS  Google Scholar 

  45. Sebastiani S, Allavena P, Albanesi C. et al. Chemokine receptor expression and function in CD4+ T lymphocytes with regulatory activity. J Immunol 2001;166:996–1002.

    PubMed  CAS  Google Scholar 

  46. Bour H, Peyron E, Gaucherand M, et al. Major histocompatibility complex class I-restricted CD8+ T cells and class II-restricted CD4+ T cells, respectively, mediate and regulate contact sensitivity to dinitrofluorobenzene. Eur J Immunol 1995;25:3006–10.

    PubMed  CAS  Google Scholar 

  47. Bradley LM, Watson SR, Swain SL, et al. Entry of naive CD4 T cells into peripheral lymph nodes requires L-selectin. J Exp Med 1994;180:2401–6.

    PubMed  CAS  Google Scholar 

  48. Gruschwitz MS, Hornstein OP. Expression of transforming growth factor type beta on human epidermal dendritic cells. J Invest Dermatol 1992;99:114–6.

    PubMed  CAS  Google Scholar 

  49. Picker LJ, Treer JR, Ferguson-Darnell B, et al. Control of lymphocyte recirculation in man. J Immunol 1993;150:1105–21.

    PubMed  CAS  Google Scholar 

  50. Kang K, Kubin M, Cooper KD, et al. IL-12 synthesis by human Langerhans cells. J Immunol 1996;156:1402–7.

    PubMed  CAS  Google Scholar 

  51. Dilulio NA, Xu H, Fairchild RL, et al. Diversion of CD4+ T cell development from regulatory T helper to effector T helper cells alters the contact hypersensitivity response. Eur J Immunol 1996;26:2606–12.

    Google Scholar 

  52. Riemann H, Schwarz A, Grabbe S, et al. Neutralization of IL-12 in vivo prevents induction of contact hypersensitivity and induces hapten-specific tolerance. J Immunol 1996;156:1799–803.

    PubMed  CAS  Google Scholar 

  53. Luqman M, Greenbaum L, Lu D, et al. Differential effect of interleukin 1 on naive and memory CD4+ T cells. Eur J Immunol 1992;22:95–100.

    PubMed  CAS  Google Scholar 

  54. Ray A, Tatter SB, May LT, et al. Activation of the human “β2-interferon/ hepatocyte-stimulating factor/ interleukin-6” promoter by cytokines, viruses, and second messenger agonists. Proc Natl Acad Sci USA 1988;85:6701–5.

    PubMed  CAS  Google Scholar 

  55. Holsti MA, Raulet DH. IL-6 and IL-1 synergize to stimulate IL-2 production and proliferation of peripheral T cells. J Immunol 1989;143:2514–9.

    PubMed  CAS  Google Scholar 

  56. Malek TR, Ashwell JD. Interleukin 2 upregulates expression of its receptor on a T cell clone. J Exp Med 1985;161:1575–80.

    PubMed  CAS  Google Scholar 

  57. Reem GH, Yeh NH. Interleukin 2 regulates expression of its receptor and synthesis of gamma interferon by human T lymphocytes. Science 1984;225:429–30.

    PubMed  CAS  Google Scholar 

  58. Linsley PS, Brady W, Grosmaire L, et al. Binding of the B cell activation antigen B7 to CD28 co-stimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med 1991;173:721–30.

    PubMed  CAS  Google Scholar 

  59. Reiser H, Schneeberger EE. Expression and function of B7-1 and B7-2 in hapten-induced contact sensitivity. Eur J Immunol 1996;26:880–5.

    PubMed  CAS  Google Scholar 

  60. Xu H, Dilulio NA, Fairchild RL. T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon-gamma producing (Tc1) effector CD8+ T cells and interleukin 4/interleukin 10 producing (Th2) negative regulatory CD4+ T cells. J Exp Med 1996;183:1001–12.

    PubMed  CAS  Google Scholar 

  61. Chang TW, Testa D, Kung PC, et al. Cellular origin and interactions involved in gamma-interferon production induced by OKT3 monoclonal antibody. J Immunol 1982;128:585–9.

    PubMed  CAS  Google Scholar 

  62. Ko HS, Fu SM, Winchester RJ, et al. Ia determinants on stimulated human T lymphocytes: occurrence on mitogen- and antigen-activated T cells. J Exp Med 1979;150:246–55.

    PubMed  CAS  Google Scholar 

  63. Vilcek J, Henriksen-Destafano D, Siegel D, et al. Regulation of IFN-gamma induction in human peripheral blood cells by exogenous and endogenously produced interleukin 2. J Immunol 1985;135:1851–6.

    PubMed  CAS  Google Scholar 

  64. Horgan KJ, Luce GE, Tanaka Y, et al. Differential expression of VLA-α4 and VLA-ϟ1 discriminates multiple subsets of CD4+, CD45RO+ “memory” T cells. J Immunol 1992;149:4082–7.

    PubMed  CAS  Google Scholar 

  65. Bouloc A, Cavani A, Katz SI. Contact hypersensitivity in MHC class II-deficient mice depends on CD8 T lymphocytes primed by immunostimulating Langerhans cells. J Invest Dermatol 1998;111:44–9.

    PubMed  CAS  Google Scholar 

  66. Krasteva M, Kehren J, Ducluzeau MT, et al. Contact dermatitis I. Pathophysiology of contact sensitivity. Eur J Dermatol 1999;9:65–77.

    PubMed  CAS  Google Scholar 

  67. Stoitzner P, Tripp CH, Douillard P, et al. Migratory Langerhans cells in mouse lymph nodes in steady state and inflammation. J Invest Dermatol 2005;125:116–25.

    PubMed  CAS  Google Scholar 

  68. Grabbe S, Scwarz T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 1998;19:37–44.

    PubMed  CAS  Google Scholar 

  69. Grabbe S, Steinbrink K, Steinert M, et al. Removal of the majority of epidermal Langerhans cells by topical or systemic steroid application enhances the effector phase of murine contact hypersensitivity. J Immunol 1995;155:4207–17.

    PubMed  CAS  Google Scholar 

  70. Baumer W, Krekeler S, DeVries VC, et al. Nonsteroidal and steroidal anti-inflammatory drugs vary in their modulation of dendritic cell function in the elicitation phase of allergic contact dermatitis. Exp Dermatol 2006;15:322–9.

    PubMed  CAS  Google Scholar 

  71. Luscinskas FW, Ding H, Lichtman AH, et al. Pselectin and VCAM-1 mediate rolling and arrest, respectively, of CD4+ T lymphocytes on TNF-αactivated vascular endothelium under flow. J Exp Med 1995;181:1179–86.

    PubMed  CAS  Google Scholar 

  72. Luscinskas FW, Kansas GS, Ding H, et al. Monocyte rolling, arrest and spreading on IL-4–activated vascular endothelium under flow is mediated via sequential action of L-selectin, β1-integrins, and β2-integrins. J Cell Biol 1994;125:1417–27.

    PubMed  CAS  Google Scholar 

  73. Lawrence MB, Springer TA. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 1991;65:859–73.

    PubMed  CAS  Google Scholar 

  74. Elices MJ, Osborn L, Takadq Y, et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/ fibronectin binding site. Cell 1990;60:577–84.

    PubMed  CAS  Google Scholar 

  75. Dustin ML, Springer TA. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol 1988;107:321–31.

    PubMed  CAS  Google Scholar 

  76. Bevilacqua MP. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 1993;11:767–804.

    PubMed  CAS  Google Scholar 

  77. Lider O, Cahalon L, Gilat D, et al. A disaccharide that inhibits tumor necrosis factor-α is formed from the extracellular matrix by the enzyme heparanase. Proc Natl Acad Sci USA 1995;92:5037–41.

    PubMed  CAS  Google Scholar 

  78. Garioch JJ, Mackie RM, Campbell I et al. Keratinocyte expression of intercellular adhesion molecule 1 (ICAM-1) correlated with infiltration of lymphocyte function associated antigen 1 (LFA-1) positive cells in evolving allergic contact dermatitis reactions. Histopathology 1991;19:351–4.

    PubMed  CAS  Google Scholar 

  79. Bevilacqua MP, Pober JS, Mendrick DL, et al. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA 1987;84:9238–42.

    PubMed  CAS  Google Scholar 

  80. Osborn L, Hession C, Tizard R, et al. Direct expression cloning of vascular cell adhesion molecule 1, acytokine-induced endothelial protein that binds to lymphocytes. Cell 1989;59:1203–11.

    PubMed  CAS  Google Scholar 

  81. Dustin ML, Rothlein R, Bhan AK, et al. Induction by IL1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol 1986;137:245–54.

    PubMed  CAS  Google Scholar 

  82. Lewis RE, Buchsbaum M, Whitaker D, et al. Intercellular adhesion molecule expression in the evolving human cutaneous delayed hypersensitivity reaction. J Invest Dermatol 1989;93:672–7.

    PubMed  CAS  Google Scholar 

  83. Griffiths CEM, Nickoloff BJ. Keratinocyte intercellular adhesion molecule-1 (ICAM-1) expression precedes dermal T lymphocytic infiltration in allergic contact dermatitis (Rhus dermatitis). Am J Pathol 1989;135:1045–53.

    PubMed  CAS  Google Scholar 

  84. Guéniche A, Viac J, Lizard G, et al. Effect of nickel on the activation state of normal human keratinocytes through interleukin 1 and intercellular adhesion molecule 1 expression. Br J Dermatol 1994;131:250–6.

    PubMed  Google Scholar 

  85. Heufler C, Topar G, Koch F et al. Cytokine gene expression in murine epidermal cell suspensions: interleukin-1β and macrophage inflammatory protein-1α are selectively expressed in Langerhans cells but are differentially regulated in culture. J Exp Med 1992;176:1221–6

    PubMed  CAS  Google Scholar 

  86. Albanesi C, Scarponi C, Sebastiani S, et al. A cytokine-to-chemokine axis between T lymphocytes and keratinocytes can favor Th1 cell accumulation in chronic inflammatory skin diseases. J Leukoc Biol 2001;70:617–23.

    PubMed  CAS  Google Scholar 

  87. Bonecchi R, Bianchi G, Bordignon PP, et al. Differential expressions of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th 1s) and Th2s. J Exp Med 1998;187:129–34.

    PubMed  CAS  Google Scholar 

  88. Flier J, Boorsma DM, Bruynzeel DP, et al. The CXCR3 activating chemokines IP-I0, Mig, and IP-9 are expressed in allergic but not in irritant patch test reactions. J Invest Dermatol 1999;113:574–8.

    PubMed  CAS  Google Scholar 

  89. Reiss Y, Proudfoot AE, Power CA, et al. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 2001;194:1541–7.

    PubMed  CAS  Google Scholar 

  90. Homey B, Wang W, Soto H, et al. Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol 2000;164:3465–70.

    PubMed  CAS  Google Scholar 

  91. Homey B, Alenius H, Muller A, et al. CCL27– CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 2002;8:157–65.

    PubMed  CAS  Google Scholar 

  92. Hosoi J, Murphy GF, Egan CL, et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 1993;363:159–63.

    PubMed  CAS  Google Scholar 

  93. Eedy D. Neuropeptides in skin. Br J Dermatol 1993;128:597–605.

    PubMed  CAS  Google Scholar 

  94. Ansel JC, Brown JR, Payan DG, et al. Substance P selectively activates TNF-alpha gene expression in murine mast cells. J Immunol 1993;150: 4478–85.

    PubMed  CAS  Google Scholar 

  95. McGillis JP, Mitsuhashi M, Payan DG. Immunomodulation by tachykinin neuropeptides. Ann NY Acad Sci 1990;594:85–94.

    PubMed  CAS  Google Scholar 

  96. Viac J, Gueniche A, Doutremepuich JD, et al. Substance P and keratinocyte activation markers: an in vitro approach. Arch Dermatol Res 1996;288:85–90.

    PubMed  CAS  Google Scholar 

  97. Calvo CF, Chavanel G, Seni K, et al. Substance P enhances IL-2 expression in activated human T cells. J Immunol 1991;148:3498–504.

    Google Scholar 

  98. Calvo CF. Substance P stabilizes interleukin-2 mRNA in activated Jurkat cells. J Neuroimmunol 1995;51:85–91.

    Google Scholar 

  99. Fox FE, Kubin M, Cassin M, et al. Calcitonin generelated peptide inhibits proliferation and antigen presentation by human peripheral blood mononuclear cells: effects on B7, interleukin 10, and interleukin 12. J Invest Dermatol 1997;108:43–8.

    PubMed  CAS  Google Scholar 

  100. Trautmann A, Akdis M, Brocker EB, et al. New insights into the role of T cells in atopic dermatitis and allergic contact dermatitis. Trends Immunol 2001 22:530–2.

    PubMed  CAS  Google Scholar 

  101. Vilcek J, Oliveira IC. Recent progress in the elucidation of interferon-gamma actions: molecular biology and biological functions. Int Arch Allergy Immunol 1994;104:311–6.

    PubMed  CAS  Google Scholar 

  102. Taub DD, Lloyd AR, Conlon K, et al. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med 1993;177:1809–14.

    PubMed  CAS  Google Scholar 

  103. Yu X, Barnhill RL, Graves DT, et al. Expression of monocyte chemoattractant protein-1 in delayed type hypersensitivity reactions in the skin. Lab Invest 1994;71:226–35.

    PubMed  CAS  Google Scholar 

  104. Kristensen MS, Deleuran BW, Larsen CG, et al. Expression of monocyte chemotactic and activating factor (MCAF) in skin related cells: a comparative study. Cytokine 1993;5:520–4.

    PubMed  CAS  Google Scholar 

  105. Enk AH, Katz SI. Identification and induction of keratinocyte-derived IL-10. J Immunol 1992;149:92–5.

    PubMed  CAS  Google Scholar 

  106. Schwarz A, Grabbe S, Riemann H, et al. In vivo effects of interleukin-10 on contact hypersensitivity and delayed-type hypersensitivity reactions. J Invest Dermatol 1994;103:211–6.

    PubMed  CAS  Google Scholar 

  107. Berg DJ, Leach MW, Kuhn R, et al. Interleukin 10 but not interleukin 4 is a natural suppressant of cutaneous inflammatory responses. J Exp Med 1995;182:99–108.

    PubMed  CAS  Google Scholar 

  108. Epstein SP, Baer RL, Thorbecke GJ, et al. Immunosuppressive effects of transforming growth factor beta: inhibition of the induction of Ia antigen on Langerhans cells by cytokines and of the contact hypersensitivity response. J Invest Dermatol 1991;96:832–7.

    PubMed  CAS  Google Scholar 

  109. Gamble JR, Vadas MA. Endothelial cell adhesiveness for human T lymphocytes is inhibited by transforming growth factor-beta 1. J Immunol 1991;146:1149–54.

    PubMed  CAS  Google Scholar 

  110. Gautam SC, Chikkala NF, Hamilton TA, et al. Anti-inflammatory action of IL-4: negative regulation of contact sensitivity to trinitrochlorobenzene. J Immunol 1992;148:1411–5.

    PubMed  CAS  Google Scholar 

  111. Gemsa D. Stimulation of prostaglandin E release from macrophages and possible role in the immune response. In: Pick E, ed. Lymphokines. New York: Academic, 1981:335.

    Google Scholar 

  112. Walker C, Kristensen F, Bettens F, et al. Lymphokine regulation of activated (G1) lymphocytes: prostaglandin E2-induced inhibition of interleukin 2 production. J Immunol 1983;130:1770–3.

    PubMed  CAS  Google Scholar 

  113. Chun M, Krim M, Granelli-Piperno A, et al. Enhancement of cytotoxic activity of natural killer cells by interleukin 2 and antagonism between interleukin 2 and adenosine cyclic monophosphate. Scand J Immunol 1985;22:375–81.

    PubMed  CAS  Google Scholar 

  114. Gorbachev AV, Fairchild RL. CD4+ T cells regulate CD8+ T cell-mediated cutaneous immune reactions by restricting effector T cell development through a Fas ligand-dependent mechanism. J Immunol 2004;172:2286–95.

    PubMed  CAS  Google Scholar 

  115. Dubois B, Chapat L, Goubier A, et al. CD4+ CD25+ T cells as key regulators of immune responses. Eur J Dermatol 2003;13:111–6.

    PubMed  Google Scholar 

  116. Skog E. The influence of pre-exposure to alkyl benzene sulphonate detergent, soap and acetone on primary irritant and allergic eczematous reactions. Acta Derm Venereol (Stockh) 1958;38:1–9.

    CAS  Google Scholar 

  117. Walker FB, Smith PD, Maibach HI, et al. Genetic factors in human allergic contact dermatitis. Int Arch Allergy Appl Immunol 1967;32:453–62.

    PubMed  CAS  Google Scholar 

  118. Sulzberger MB. Hypersensitiveness to arsphenamine in guinea pigs. Arch Dermatol 1929;20: 669–73.

    Google Scholar 

  119. Chase MW. Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc Soc Exp Biol Med 1946;61:257–63.

    CAS  Google Scholar 

  120. Elmets CA, Bergstresser PR, Tigelaar RE, et al. Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation. J Exp Med 1983;158:781–94.

    PubMed  CAS  Google Scholar 

  121. Akbari O, Umetsu DT. Role of regulatory dendritic cells in allergy and asthma. Curr Allergy Asthma Rep 2005;5:56–61.

    PubMed  CAS  Google Scholar 

  122. Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004;4:762–74.

    PubMed  CAS  Google Scholar 

  123. Girolomoni G, Gisondi P, Ottaviani C, et al Immunoregulation of allergic contact dermatitis. J Dermatol 2004;31:264–70.

    PubMed  CAS  Google Scholar 

  124. Cavani A. Breaking tolerance to nickel. Toxicology 2005;209:119–21.

    PubMed  CAS  Google Scholar 

  125. Nossal GJ. Molecular and cellular aspects of immunologic tolerance. Eur J Biochem 1991;202: 729–37.

    PubMed  CAS  Google Scholar 

  126. Kwangsukstith C, Maibach HI. Effect of age and sex on the induction and elicitation of allergic contact dermatitis. Contact Dermatitis 1995;33: 289–98.

    PubMed  CAS  Google Scholar 

  127. Belsito DV, Dersarkissian RM, Thorbecke RJ, et al. Reversal by lymphokines of the age-related hyporesponsiveness to contact sensitization and reduced Ia expression on Langerhans cells. Arch Dermatol Res 1987;279:S76–80.

    PubMed  CAS  Google Scholar 

  128. Belsito DV, Possick LE. Age-related changes in allergic contact hypersensitivity: functional T cell deficiencies are primarily responsible. J Invest Dermatol 1988;90:546.

    Google Scholar 

  129. Marcussen P V. Primary irritant patch-test reactions in children. Arch Dermatol 1963;87:378–82.

    PubMed  CAS  Google Scholar 

  130. Rietschel RL, Rosenthal LE, Adams RM, et al. Standard patch test screening series used diagnostically in young and elderly patients. Am J Contact Dermatitis 1990;1:53–55.

    Google Scholar 

  131. Gonçalo S, Gonçalo M, Azenha A, et al. Allergic contact dermatitis in children: a multicenter study of the Portuguese Contact Dermatitis Group (GPEDC). Contact Dermatitis 1992;26:112–5.

    PubMed  Google Scholar 

  132. Strauss HW. Artificial sensitization of infants to poison ivy. J Allergy 1931;2:137–46.

    Google Scholar 

  133. Schubert H, Berova N, Czernielewski A, et al. Epidemiology of nickel allergy. Contact Dermatitis 1987;16:122–8.

    PubMed  CAS  Google Scholar 

  134. Belsito DV. The pathophysiology of allergic contact hypersensitivity. Clin Rev Allergy 1989;7:347–79.

    PubMed  CAS  Google Scholar 

  135. Aubin F, Mousson C. Ultraviolet light-induced regulatory (suppressor) T cells: an approach for promoting induction of operational allograft tolerance? Transplantation 2004;77:S29–31.

    PubMed  Google Scholar 

  136. Belsito DV. Patch-testing: after 100 years, still the gold standard in diagnosing cutaneous delayedtype hypersensitivity. In: Kurth R, ed. Regulatory Control and Standardization of Allergenic Extracts: The Eighth International Paul Ehrlich Seminar. Stuttgart: Gustav Fischer, 1997:195–202.

    Google Scholar 

  137. Balato N, Patruno C, Lembo G, et al. Effect of pentoxifylline on patch test response. Contact Dermatitis 1996;35:128–30.

    Google Scholar 

  138. Elsner PL. Clinical irritant contact dermatitis syndromes. Am J Contact Dermat 1997;8:81–82.

    Google Scholar 

  139. Wood LC, Jackson SM, Elias PM, et al. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J Clin Invest 1992;90: 482–7.

    PubMed  CAS  Google Scholar 

  140. Tsai J-C, Feingold KR, Crumrine D, et al. Permeability barrier disruption alters the localization and expression of TNF-alpha protein in the epidermis. Arch Dermatol Res 1994;286:242–8.

    PubMed  CAS  Google Scholar 

  141. Denda M, Wood LC, Emami S, et al. The epidermal hyperplasia associated with repeated barrier disruption by acetone treatment or tape stripping cannot be attributed to increased water loss. Arch Dermatol Res 1996;288:230–8.

    PubMed  CAS  Google Scholar 

  142. Astner S, González E, Cheung AC, et al. Noninvasive evaluation of the kinetics of allergic and irritant contact dermatitis. J Invest Dermatol 2005;124:351–9.

    PubMed  CAS  Google Scholar 

  143. Effendy I, Löffler H, Maibach HI. Epidermal cytokines in murine cutaneous irritant responses. J Appl Toxicol 2000;20:335–41.

    PubMed  Google Scholar 

  144. Pentland AP. The role of prostaglandins and other lipid mediators in irritant contact dermatitis. Am J Contact Dermatol 1994;8:98.

    Google Scholar 

  145. Onoue S, Tsuda Y. Analytical studies on the prediction of photosensitive/phototoxic potential of pharmaceutical substances. Pharm Res 2006;23:156–64.

    PubMed  CAS  Google Scholar 

  146. Willis CM, Reiche L, Wilkinson JD. Immunocytochemical demonstration of reduced Cu,Znsuperoxide dismutase levels following topical application of dithranol and sodium lauryl sulphate: an indication of the role of oxidative stress in acute irritant contact dermatitis. Eur J Dermatol 1998;8:8–12.

    PubMed  CAS  Google Scholar 

  147. Li L-F, Fiedler VC, Kumar R. Down-regulation of protein kinase C isoforms in irritant contact dermatitis. Contact Dermatitis 1998;38:319–24.

    PubMed  CAS  Google Scholar 

  148. Rogers JV, Garrett CM, McDougal JN. Gene expression in rat skin induced by irritating chemicals. J Biochem Mol Toxicol 2003;17:123–37.

    PubMed  CAS  Google Scholar 

  149. Schürer N Y. Implementation of fatty acid carriers to skin irritation and the epidermal barrier. Contact Dermatitis. 2002;47:199–205.

    PubMed  Google Scholar 

  150. Berardesca E, Distante F. The modulation of skin irritation. Contact Dermatitis 1994;31:281–7.

    PubMed  CAS  Google Scholar 

  151. Gutwald J, Goebeler M, Sorg C. Neuropeptides enhance irritant and allergic contact dermatitis. J Invest Dermatol 1991;96:695–8.

    PubMed  CAS  Google Scholar 

  152. Laurenzi MA, Persson MA, Dalsgaard CJ, et al. The neuropeptide substance P stimulates production of interleukin 1 in human blood monocytes: activated cells are preferentially influenced by the neuropeptide. Scand J Immunol 1990;31:529–33.

    PubMed  CAS  Google Scholar 

  153. Rameshwar P, Gascon P, Ganea D. Stimulation of IL-2 production in murine lymphocytes by substance P and related tachykinins. J Immunol 1993;151:2484–96.

    PubMed  CAS  Google Scholar 

  154. Ceriani G, Macaluso A, Catania A, et al. Central neurogenic antiinflammatory action of alpha-MSH: modulation of peripheral inflammation induced by cytokines and other mediators of inflammation. Neuroendocrinology 1994;59:138–43.

    PubMed  CAS  Google Scholar 

  155. Luger TA, Scholzen TE, Brzoska T, et al. New insights into the function of alpha-MSH and related peptides in the immune system. Ann NY Acad Sci 2003;994:133–40.

    PubMed  CAS  Google Scholar 

  156. Roussaki-Schulze AV, Zafiriou E, Nikoulis D, et al. Objective biophysical findings in patients with sensitive skin. Drugs Exp Clin Res 2005;31(suppl): 17–24.

    PubMed  Google Scholar 

  157. DiNardo A, Sugino K, Wertz P, et al. Sodium lauryl sulfate induced irritant contact dermatitis: a correlation study between ceramides and in vivo parameters of irritation. Contact Dermatitis 1996;33:86–91.

    Google Scholar 

  158. Patil S, Maibach HI. Effect of age and sex on the elicitation of irritant contact dermatitis. Contact Dermatitis 1994;30:257–64.

    PubMed  CAS  Google Scholar 

  159. Lee CH, Maibach HI. The sodium lauryl sulfate model: an overview. Contact Dermatitis 1995;33: 1–7.

    PubMed  Google Scholar 

  160. Fluhr JW, Pfisterer S, Gloor M. Direct comparison of skin physiology in children and adults with bioengineering methods. Pediatr Dermatol 2000;17:436–9.

    PubMed  CAS  Google Scholar 

  161. Agner T, Damm P, Skouby SO. Menstrual cycle and skin reactivity. J Am Acad Dermatol 1991;24: 566–70.

    PubMed  CAS  Google Scholar 

  162. Lantinga H, Nater JP, Coenraads PJ. Prevalence, incidence and course of eczema on the hands and forearms in a sample of the general population. Contact Dermatitis 1984;10:135–9.

    PubMed  CAS  Google Scholar 

  163. Meding B, Swanbeck G. Prevalence of hand dermatitis in an industrial city. Br J Dermatol 1987;116:627–34.

    PubMed  CAS  Google Scholar 

  164. Berardesca E, Maibach H. Racial differences in skin pathophysiology. J Am Acad Dermatol 1996;34:667–72.

    PubMed  CAS  Google Scholar 

  165. Weigand DA, Gaylor JR. Irritant reaction in Negro and Caucasian skin. South Med J 1974;67:548–51.

    PubMed  CAS  Google Scholar 

  166. Britz MB, Maibach HI. Human cutaneous vulvar reactivity to irritants. Contact Dermatitis 1979;5:375–7.

    PubMed  CAS  Google Scholar 

  167. Elsner P, Wilhelm D, Maibach HI. Effects of low concentration sodium lauryl sulfate on human vulvar and forearm skin. J Reprod Med 1991;36:77–81.

    PubMed  CAS  Google Scholar 

  168. Tupker RA, Pinnagoda J, Coenraads PJ, et al. Susceptibility to irritants: role of barrier function, skin dryness, and history of atopic dermatitis. Br J Dermatol 1990;123:199–205.

    PubMed  CAS  Google Scholar 

  169. Imokawa, G, Abe A, Jin K, et al. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol 1991;96:523–6.

    PubMed  CAS  Google Scholar 

  170. Sulzberger MB. The patch test: who should and should not use it and why. Contact Dermatitis 1975;1:117–9.

    PubMed  CAS  Google Scholar 

  171. Marks JG Jr, Moss JH, Parno JR, et al. Methylchl oroisothiazolinone/ methylisothiazolinone (Kathon CG) Biocide-United States multicenter study of human skin sensitization. Am J Contact Dermatitis 1990;1:157–61.

    Google Scholar 

  172. Epstein WL. The use test for contact hypersensitivity. Arch Dermatol Res 1982;272:279–81.

    PubMed  CAS  Google Scholar 

  173. Mitchell JC. Multiple concomitant positive patch test reactions. Contact Dermatitis 1975;3:315–20.

    Google Scholar 

  174. Przybilla B, Burg G, Thieme C. Evaluation of the immune status in vivo by the 2,4–dinitro-1– chlorobenzene contact allergy time (DNCB-CAT). Dermatologica 1983;167:1–5.

    PubMed  CAS  Google Scholar 

  175. Belsito DV, Storrs FJ, Taylor JS, et al. Reproducibility of patch tests: a U.S. multicenter study. Am J Contact Dermatitis 1992;3:193–200.

    Google Scholar 

  176. Rietschel RL, Fowler JF Jr. Fisher's Contact Dermatitis, 5th ed. Baltimore: Williams & Wilkins, 2001.

    Google Scholar 

  177. Guin JD. Practical Contact Dermatitis. New York: McGraw-Hill, 1995.

    Google Scholar 

  178. Kanerva L, Elsner P, Wahlberg JE, et al., eds. Handbook of Occupational Dermatology. Heidelberg: Springer-Verlag, 2000.

    Google Scholar 

  179. Ramsing DW, Agner T. Efficacy of topical corticosteroids on irritant skin reactions. Contact Dermatitis 1995;32:293–7.

    PubMed  CAS  Google Scholar 

  180. Belsito, DV, Fowler J, Marks J, et al. A potential new treatment for chronic hand dermatitis. Cutis 2004;73:31–8.

    PubMed  Google Scholar 

  181. Belsito DV, Wilson DC, Warshaw E, et al. A prospective randomized clinical trial of 0.1% tacrolimus ointment in a model of chronic allergic contact dermatitis. J Am Acad Dermatol 2006;55:40–6.

    PubMed  Google Scholar 

  182. Mork NJ, Austad J. Short wave ultraviolet light (UVB) treatment of allergic contact dermatitis of the hands. Acta Derm Venereol (Stockh) 1982;63:87–9.

    Google Scholar 

  183. Bruynzeel DP, Boon WJ, Van Ketel WG, Oral psoralen photo-chemotherapy of allergic contact dermatitis of the hands. Dermatosen Beruf Umwelt 1982;30:16–20.

    CAS  Google Scholar 

  184. Warshawshki L,Mitchell JC, Storrs FJ. Allergic contact dermatitis from glyceryl monothioglycolate in hair dressers. Contact Dermatitis 1981;7:351–2.

    PubMed  CAS  Google Scholar 

  185. Henriksen HR. Beskyttelsesklaeder mod Kemikalier, Oplosnings-parametre og Taethed. Lyngby, Denmark: Instituttet for Kemiindustri, 1986.

    Google Scholar 

  186. Frosch PJ, Kurte A. Efficacy of skin barrier creams (IV): the repetitive irritation test (RIT) with a set of 4 standard irritants. Contact Dermatitis 1994;31:161–8.

    PubMed  CAS  Google Scholar 

  187. Wigger-Alberti W, Elsner P. Do barrier creams and gloves prevent or provoke contact dermatitis? Am J Contact Dermat 1998;9:100–6.

    PubMed  CAS  Google Scholar 

  188. Frosch PJ, Schulze-Dirks A, Hoffmann M, et al. Efficacy of skin barrier creams (I): the repetitive irritation test (RIT) in the guinea pig. Contact Dermatitis 1993;28:94–100.

    PubMed  CAS  Google Scholar 

  189. McCormick RD, Buchman TL, Maki DG. Double blind, randomized trial of scheduled use of a novel barrier cream and an oil-containing lotion for protecting the hands of health care workers. Am J Infect Control 2000;28:302–10.

    PubMed  CAS  Google Scholar 

  190. Perrenoud D, Gallezot D, vanMelle G. The efficacy of a protective cream in a real world apprentice hairdresser environment. Contact Dermatitis 2001;45:134–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Belsito, D.V. (2008). Contact Dermatitis: Allergic and Irritant. In: Gaspari, A.A., Tyring, S.K. (eds) Clinical and Basic Immunodermatology. Springer, London. https://doi.org/10.1007/978-1-84800-165-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-165-7_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-164-0

  • Online ISBN: 978-1-84800-165-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics