Skip to main content
  • Cytokines are soluble mediators (polypeptides) that act as messengers of the immune system.

  • Cytokines are critical in fundamental processes such as host defense, cell cycle control, inflammation, cancer, fibrosis, wound healing, and angiogenesis.

  • Cytokines and chemokines have been implicated in the pathogenesis of a number of skin diseases, and are now being targeted by specific biologic agents produced by recombinant DNA technology.

  • Chemokines are a structurally diverse collection of bioactive molecules that include lipids, peptides, and small proteins of several classes.

  • Chemokines play a critical role in the pathogenesis wound healing, scarring of cell trafficking, cancer and inflammatory skin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holman DM, Kalaaji AN. Cytokines in dermatology. J Drugs Dermatol 2006;5:520–524.

    PubMed  Google Scholar 

  2. Nickoloff BJ, Stevens SR. What have we learned in dermatology from the biologic therapies? J Am Acad Dermatol 2006;54:S143–51.

    Article  PubMed  Google Scholar 

  3. Trefzer U, Hofmann M, Sterry W, Asadullah K. Cytokine and anticytokine therapy in dermatology. Expert Opin Biol Ther 2003;3:733–743.

    Article  PubMed  CAS  Google Scholar 

  4. Asadullah K, Sterry W, Trefzer U. Cytokines: interleukin and interferon therapy in dermatology. Clin Exp Dermatol 2002;27:578–584.

    Article  PubMed  CAS  Google Scholar 

  5. Asadullah K, Sterry W, Trefzer U. Cytokine therapy in dermatology. Exp Dermatol 2002;11:97–106.

    Article  PubMed  CAS  Google Scholar 

  6. Chinen J, Shearer WT. Basic and clinical immunology. J Allergy Clin Immunol 2005;116:411–418.

    Article  PubMed  CAS  Google Scholar 

  7. Romagnani S. T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 2000;85:9–18; quiz 18, 21.

    PubMed  CAS  Google Scholar 

  8. Ngoc PL, Gold DR, Tzianabos AO, Weiss ST, Celedon JC. Cytokines, allergy, and asthma. Curr Opin Allergy Clin Immunol 2005;5:161–166.

    Article  PubMed  CAS  Google Scholar 

  9. Shibuya H, Hirohata S. Differential effects of IFNalpha on the expression of various TH2 cytokines in human CD4+ T cells. J Allergy Clin Immunol 2005;116:205–212.

    Article  PubMed  CAS  Google Scholar 

  10. Dong C, Flavell RA. Th1 and Th2 cells. Curr Opin Hematol 2001;8:47–51.

    Article  PubMed  CAS  Google Scholar 

  11. Taylor JJ, Mohrs M, Pearce EJ. Regulatory T cell responses develop in parallel to Th responses and control the magnitude and phenotype of the Th effector population. J Immunol 2006;176:5839–5847.

    PubMed  CAS  Google Scholar 

  12. Clark-Lewis I, Schumacher C, Baggiolini M, Moser B. Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs: critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem 1991;266:23128–23134.

    PubMed  CAS  Google Scholar 

  13. Boyce DE, Ciampolini J, Ruge F, Murison MS, Harding KG. Inflammatory-cell subpopulations in keloid scars. Br J Plast Surg 2001;54:511–516.

    Article  PubMed  CAS  Google Scholar 

  14. Sporn MB, Roberts AB. The transforming growth factor-betas: past, present, and future. Ann N Y Acad Sci 1990;593:1–6.

    Article  PubMed  CAS  Google Scholar 

  15. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 1986;83:4167–4171.

    Article  PubMed  CAS  Google Scholar 

  16. Wrana JL, Attisano L, Carcamo J, et al. TGF beta signals through a heteromeric protein kinase receptor complex. Cell 1992;71:1003–1014.

    Article  PubMed  CAS  Google Scholar 

  17. Massague J, Andres J, Attisano L, et al. TGF-beta receptors. Mol Reprod Dev 1992;32:99–104.

    Article  PubMed  CAS  Google Scholar 

  18. Massague J. TGF-beta signal transduction. Annu Rev Biochem 1998;67:753–791.

    Article  PubMed  CAS  Google Scholar 

  19. Chin GS, Liu W, Peled Z, et al. Differential expression of transforming growth factor-beta receptors I and II and activation of smad 3 in keloid fibroblasts. Plast Reconstr Surg 2001;108:423–429.

    Article  PubMed  CAS  Google Scholar 

  20. Schmid P, Itin P, Cherry G, Bi C, Cox DA. Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J Pathol 1998;152:485–493.

    PubMed  CAS  Google Scholar 

  21. Tredget EE, Nedelec B, Scott PG, Ghahary A. Hypertrophic scars, keloids, and contractures. The cellular and molecular basis for therapy. Surg Clin North Am 1997;77:701–730.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang K, Garner W, Cohen L, Rodriguez J, Phan S. Increased types I and III collagen and transforming growth factor-beta 1 mRNA and protein in hypertrophic burn scar. J Invest Dermatol 1995;104: 750–754.

    Article  PubMed  CAS  Google Scholar 

  23. Garner WL, Karmiol S, Rodriguez JL, Smith DJ Jr, Phan SH. Phenotypic differences in cytokine responsiveness of hypertrophic scar versus normal dermal fibroblasts. J Invest Dermatol 1993;101:875–879.

    Article  PubMed  CAS  Google Scholar 

  24. Younai S, Venters G, Vu S, Nichter L, Nimni ME, Tuan TL. Role of growth factors in scar contraction: an in vitro analysis. Ann Plast Surg 1996;36: 495–501.

    Article  PubMed  CAS  Google Scholar 

  25. Smith P, Mosiello G, Deluca L, Ko F, Maggi S, Robson MC. TGF-beta2 activates proliferative scar fibroblasts. J Surg Res 1999;82:319–323.

    Article  PubMed  CAS  Google Scholar 

  26. Smith PD, Siegler K, Wang X, Robson MC. Transforming growth factor beta 2 increases DNA synthesis and collagen production in keloid fibroblasts. Surg Forum 1998;49:617.

    CAS  Google Scholar 

  27. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995;108(pt 3):985–1002.

    PubMed  CAS  Google Scholar 

  28. Tredget EE. The molecular biology of fibroproliferative disorders of the skin: Potential cytokine therapeutics. Ann Plast Surg 1994;33:152–154.

    PubMed  CAS  Google Scholar 

  29. Shah M, Foreman DM, Ferguson MW. Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet 1992;339:213–214.

    Article  PubMed  CAS  Google Scholar 

  30. Finesmith TH, Broadley KN, Davidson JM. Fibroblasts from wounds of different stages of repair vary in their ability to contract a collagen gel in response to growth factors. J Cell Physiol 1990;144:99–107.

    Article  PubMed  CAS  Google Scholar 

  31. Montesano R, Orci L. Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: Implications for wound healing. Proc Natl Acad Sci U S A 1988;85:4894–4897.

    Article  PubMed  CAS  Google Scholar 

  32. Frank S, Madlener M, Werner S. Transforming growth factors beta1, beta2, and beta3 and their receptors are differentially regulated during normal and impaired wound healing. J Biol Chem 1996;271:10188–10193.

    Article  PubMed  CAS  Google Scholar 

  33. Renovo. Products in development. http://www.ren-ovo.com.

  34. Kalvakolanu DV, Borden EC. An overview of the interferon system: signal transduction and mechanisms of action. Cancer Invest 1996;14:25–53.

    Article  PubMed  CAS  Google Scholar 

  35. Berman B, Duncan MR. Short-term keloid treatment in vivo with human interferon alfa-2b results in a selective and persistent normalization of keloidal fibroblast collagen, glycosaminoglycan, and collagenase production in vitro. J Am Acad Dermatol 1989;21:694–702.

    PubMed  CAS  Google Scholar 

  36. Jimenez SA, Freundlich B, Rosenbloom J. Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J Clin Invest 1984;74:1112–1116.

    Article  PubMed  CAS  Google Scholar 

  37. Duncan MR, Berman B. Gamma interferon is the lymphokine and beta interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation. J Exp Med 1985;162:516–527.

    Article  PubMed  CAS  Google Scholar 

  38. Adelmann-Grill BC, Hein R, Wach F, Krieg T. Inhibition of fibroblast chemotaxis by recombinant human interferon gamma and interferon alpha. J Cell Physiol 1987;130:270–275.

    Article  PubMed  CAS  Google Scholar 

  39. Elias JA, Jimenez SA, Freundlich B. Recombinant gamma, alpha, and beta interferon regulation of human lung fibroblast proliferation. Am Rev Respir Dis 1987;135:62–65.

    PubMed  CAS  Google Scholar 

  40. Jimenez SA, Hitraya E, Varga J. Pathogenesis of scleroderma. Collagen. Rheum Dis Clin North Am 1996;22:647–674.

    Article  PubMed  CAS  Google Scholar 

  41. Duncan MR, Hasan A, Berman B. Pentoxifylline, pentifylline, and interferons decrease type I and III procollagen mRNA levels in dermal fibroblasts: evidence for mediation by nuclear factor 1 downregulation. J Invest Dermatol 1995;104:282–286.

    Article  PubMed  CAS  Google Scholar 

  42. Czaja MJ, Weiner FR, Takahashi S, et al. Gamma-interferon treatment inhibits collagen deposition in murine schistosomiasis. Hepatology 1989;10:795–800.

    Article  PubMed  CAS  Google Scholar 

  43. Ghosh AK, Yuan W, Mori Y, Chen S, Varga J. Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. integration at the level of p300/CBP transcriptional coactivators. J Biol Chem 2001;276:11041–11048.

    Article  PubMed  CAS  Google Scholar 

  44. Tredget EE, Wang R, Shen Q, Scott PG, Ghahary A. Transforming growth factor-beta mRNA and protein in hypertrophic scar tissues and fibroblasts: Antagonism by IFN-alpha and IFN-gamma in vitro and in vivo. J Interferon Cytokine Res 2000;20:143–151.

    Article  PubMed  CAS  Google Scholar 

  45. Varga J, Olsen A, Herhal J, Constantine G, Rosenbloom J, Jimenez SA. Interferon-gamma reverses the stimulation of collagen but not fibronectin gene expression by transforming growth factorbeta in normal human fibroblasts. Eur J Clin Invest 1990;20:487–493.

    PubMed  CAS  Google Scholar 

  46. Tredget EE, Shankowsky HA, Pannu R, et al. Transforming growth factor-beta in thermally injured patients with hypertrophic scars: effects of interferon alpha-2b. Plast Reconstr Surg 1998;102:1317–28; discussion 1329–30.

    Article  PubMed  CAS  Google Scholar 

  47. Vassiliadis T, Patsiaoura K, Tziomalos K, et al. Pegylated IFN-alpha 2b added to ongoing lamivudine therapy in patients with lamivudine-resistant chronic hepatitis B. World J Gastroenterol 2006;12:2417–2422.

    PubMed  CAS  Google Scholar 

  48. Berenguer M, Palau A, Fernandez A, et al. Efficacy, predictors of response, and potential risks associated with antiviral therapy in liver transplant recipients with recurrent hepatitis C. Liver Transpl 2006;12(7):1067–1076.

    Article  PubMed  Google Scholar 

  49. Kreuter A, Brockmeyer NH, Weissenborn SJ, et al. 5% imiquimod suppositories decrease the DNA load of intra-anal HPV types 6 and 11 in HIV-infected men after surgical ablation of condylomata acuminata. Arch Dermatol 2006;142:243–244.

    Article  PubMed  Google Scholar 

  50. Fluck M, Kamanabrou D, Lippold A, Reitz M, Atzpodien J. Dose-dependent treatment benefit in high-risk melanoma patients receiving adjuvant highdose interferon alfa-2b. Cancer Biother Radiopharm 2005;20:280–289.

    Article  PubMed  CAS  Google Scholar 

  51. Korman N, Moy R, Ling M, et al. Dosing with 5% imiquimod cream 3 times per week for the treatment of actinic keratosis: results of two phase 3, randomized, double-blind, parallel-group, vehiclecontrolled trials. Arch Dermatol 2005;141:467–473.

    Article  PubMed  CAS  Google Scholar 

  52. Marchitelli C, Secco G, Perrotta M, Lugones L, Pesce R, Testa R. Treatment of bowenoid and basaloid vulvar intraepithelial neoplasia 2/3 with imiquimod 5% cream. J Reprod Med 2004;49:876–882.

    PubMed  Google Scholar 

  53. Berman B, Villa AM, Ramirez CC. Novel opportunities in the treatment and prevention of scarring. J Cutan Med Surg 2004;8(suppl 3):32–36.

    Article  PubMed  Google Scholar 

  54. Smith KJ, Hamza S, Skelton H. The imidazoquinolines and their place in the therapy of cutaneous disease. Expert Opin Pharmacother 2003;4:1105–1119.

    Article  PubMed  CAS  Google Scholar 

  55. Bong AB, Bonnekoh B, Franke I, Schon MP, Ulrich J, Gollnick H. Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 2002;205:135–138.

    Article  PubMed  CAS  Google Scholar 

  56. Berman B, Kaufman J. Pilot study of the effect of postoperative imiquimod 5% cream on the recurrence rate of excised keloids. J Am Acad Dermatol 2002;47:S209–11.

    Article  PubMed  Google Scholar 

  57. Edwards L. The interferons. Dermatol Clin 2001;19:139–46, ix.

    Article  PubMed  CAS  Google Scholar 

  58. Vonderheid EC, Thompson R, Smiles KA, Lattanand A. Recombinant interferon alfa-2b in plaque-phase mycosis fungoides: intralesional and low-dose intramuscular therapy. Arch Dermatol 1987;123: 757–763.

    Article  PubMed  CAS  Google Scholar 

  59. Rusciani L, Petraglia S, Alotto M, Calvieri S, Vezzoni G. Postsurgical adjuvant therapy for melanoma: evaluation of a 3-year randomized trial with recombinant interferon-alpha after 3 and 5 years of followup. Cancer 1997;79:2354–2360.

    Article  PubMed  CAS  Google Scholar 

  60. Buechner SA, Wernli M, Harr T, Hahn S, Itin P, Erb P. Regression of basal cell carcinoma by intralesional interferon-alpha treatment is mediated by CD95 (apo-1/Fas)-CD95 ligand-induced suicide. J Clin Invest 1997;100:2691–2696.

    Article  PubMed  CAS  Google Scholar 

  61. Buechner SA. Intralesional interferon alfa-2b in the treatment of basal cell carcinoma. immunohistochemical study on cellular immune reaction leading to tumor regression. J Am Acad Dermatol 1991;24:731–734.

    PubMed  CAS  Google Scholar 

  62. Greenway HT, Cornell RC, Tanner DJ, Peets E, Bordin GM, Nagi C. Treatment of basal cell carcinoma with intralesional interferon. J Am Acad Dermatol 1986;15:437–443.

    PubMed  CAS  Google Scholar 

  63. Stenquist B, Wennberg AM, Gisslen H, Larko O. Treatment of aggressive basal cell carcinoma with intralesional interferon: evaluation of efficacy by Mohs surgery. J Am Acad Dermatol 1992;27:65–69.

    PubMed  CAS  Google Scholar 

  64. Edwards L, Berman B, Rapini RP, et al. Treatment of cutaneous squamous cell carcinomas by intralesional interferon alfa-2b therapy. Arch Dermatol 1992;128:1486–1489.

    Article  PubMed  CAS  Google Scholar 

  65. Krown SE. Interferon and other biologic agents for the treatment of Kaposi's sarcoma. Hematol Oncol Clin North Am 1991;5:311–322.

    PubMed  CAS  Google Scholar 

  66. Apisarnthanarax N, Duvic M. Cutaneous T-cell lymphoma. new immunomodulators. Dermatol Clin 2001;19:737–748.

    PubMed  CAS  Google Scholar 

  67. Broder S, Bunn PA Jr. Cutaneous T-cell lymphomas. Semin Oncol 1980;7:310–331.

    PubMed  CAS  Google Scholar 

  68. Bunn PA,Jr, Hoffman SJ, Norris D, Golitz LE, Aeling JL. Systemic therapy of cutaneous T-cell lymphomas (mycosis fungoides and the Sezary syndrome). Ann Intern Med 1994;121:592–602.

    PubMed  Google Scholar 

  69. Nickoloff BJ, Bonish B, Huang BB, Porcelli SA. Characterization of a T cell line bearing natural killer receptors and capable of creating psoriasis in a SCID mouse model system. J Dermatol Sci 2000;24:212–225.

    Article  PubMed  CAS  Google Scholar 

  70. Gilliet M, Conrad C, Geiges M, et al. Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol 2004;140:1490–1495.

    Article  PubMed  CAS  Google Scholar 

  71. Funk J, Langeland T, Schrumpf E, Hanssen LE. Psoriasis induced by interferon-alpha. Br J Dermatol 1991;125:463–465.

    Article  PubMed  CAS  Google Scholar 

  72. Shiohara T, Kobayashi M, Abe K, Nagashima M. Psoriasis occurring predominantly on warts: possible involvement of interferon alfa. Arch Dermatol 1988;124:1816–1821.

    Article  PubMed  CAS  Google Scholar 

  73. Fierlbeck G, Rassner G. Treatment of psoriasis and psoriatic arthritis with interferon gamma. J Invest Dermatol 1990;95:138S–141S.

    Article  PubMed  CAS  Google Scholar 

  74. Fierlbeck G, Rassner G, Muller C. Psoriasis induced at the injection site of recombinant interferon gamma: results of immunohistologic investigations. Arch Dermatol 1990;126:351–355.

    Article  PubMed  CAS  Google Scholar 

  75. Farrell AM, Antrobus P, Simpson D, Powell S, Chapel HM, Ferry BL. A rapid flow cytometric assay to detect CD4+ and CD8+ T-helper (th) 0, Th1 and Th2 cells in whole blood and its application to study cytokine levels in atopic dermatitis before and after cyclosporin therapy. Br J Dermatol 2001;144:24–33.

    Article  PubMed  CAS  Google Scholar 

  76. Grewe M, Walther S, Gyufko K, Czech W, Schopf E, Krutmann J. Analysis of the cytokine pattern expressed in situ in inhalant allergen patch test reactions of atopic dermatitis patients. J Invest Dermatol 1995;105:407–410.

    Article  PubMed  CAS  Google Scholar 

  77. Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. J Clin Invest 2004;113:651–657.

    PubMed  CAS  Google Scholar 

  78. Kirkwood J. Cancer immunotherapy: the interferonalpha experience. Semin Oncol 2002;29:18–26.

    Article  PubMed  CAS  Google Scholar 

  79. Stevens SR, Hanifin JM, Hamilton T, Tofte SJ, Cooper KD. Long-term effectiveness and safety of recombinant human interferon gamma therapy for atopic dermatitis despite unchanged serum IgE levels. Arch Dermatol 1998;134:799–804.

    Article  PubMed  CAS  Google Scholar 

  80. Schneider LC, Baz Z, Zarcone C, Zurakowski D. Long-term therapy with recombinant interferongamma (rIFN-gamma) for atopic dermatitis. Ann Allergy Asthma Immunol 1998;80:263–268.

    Article  PubMed  CAS  Google Scholar 

  81. Somos Z, Schneider I. Serum and secretory immunoglobulins in atopic dermatitis. Orv Hetil 1993;134:1359–1361.

    PubMed  CAS  Google Scholar 

  82. Hanifin JM, Schneider LC, Leung DY, et al. Recombinant interferon gamma therapy for atopic dermatitis. J Am Acad Dermatol 1993;28:189–197.

    Article  PubMed  CAS  Google Scholar 

  83. Steenfos HH. Growth factors and wound healing. Scand J Plast Reconstr Surg Hand Surg 1994;28:95–105.

    Article  PubMed  CAS  Google Scholar 

  84. Rapala K. The effect of tumor necrosis factor-alpha on wound healing. an experimental study. Ann Chir Gynaecol Suppl 1996;211:1–53.

    PubMed  CAS  Google Scholar 

  85. Duncan MR, Berman B. Differential regulation of collagen, glycosaminoglycan, fibronectin, and collagenase activity production in cultured human adult dermal fibroblasts by interleukin 1-alpha and beta and tumor necrosis factor-alpha and beta. J Invest Dermatol 1989;92:699–706.

    Article  PubMed  CAS  Google Scholar 

  86. Castagnoli C, Stella M, Berthod C, Magliacani G, Richiardi PM. TNF production and hypertrophic scarring. Cell Immunol 1993;147:51–63.

    Article  PubMed  CAS  Google Scholar 

  87. He W, Liu R, Zhong B. Response of keloid fibroblasts to the effect of tumor necrosis factor-alpha (TNF-alpha). Zhonghua Zheng Xing Wai Ke Za Zhi 2001;17:332–334.

    PubMed  CAS  Google Scholar 

  88. O'Sullivan ST, O'Shaughnessy M, O'Connor TP. Aetiology and management of hypertrophic scars and keloids. Ann R Coll Surg Engl 1996;78:168–175.

    PubMed  Google Scholar 

  89. McCauley RL, Chopra V, Li YY, Herndon DN, Robson MC. Altered cytokine production in black patients with keloids. J Clin Immunol 1992;12:300–308.

    Article  PubMed  CAS  Google Scholar 

  90. Bechtel MJ, Reinartz J, Rox JM, Inndorf S, Schaefer BM, Kramer MD. Upregulation of cell-surfaceassociated plasminogen activation in cultured keratinocytes by interleukin-1 beta and tumor necrosis factor-alpha. Exp Cell Res 1996;223:395–404.

    Article  PubMed  CAS  Google Scholar 

  91. Placik OJ, Lewis VL Jr. Immunologic associations of keloids. Surg Gynecol Obstet 1992;175:185–193.

    PubMed  CAS  Google Scholar 

  92. Arican O, Aral M, Sasmaz S, Ciragil P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005;2005:273–279.

    Article  PubMed  CAS  Google Scholar 

  93. Roussaki-Schulze AV, Kouskoukis C, Petinaki E, et al. Evaluation of cytokine serum levels in patients with plaque-type psoriasis. Int J Clin Pharmacol Res 2005;25:169–173.

    PubMed  CAS  Google Scholar 

  94. Gottlieb AB, Matheson RT, Lowe N, et al. A randomized trial of etanercept as monotherapy for psoriasis. Arch Dermatol 2003;139:1627–32; discussion 1632.

    Article  PubMed  CAS  Google Scholar 

  95. Leonardi CL, Powers JL, Matheson RT, et al. Etanercept as monotherapy in patients with psoriasis. N Engl J Med 2003;349:2014–2022.

    Article  PubMed  CAS  Google Scholar 

  96. Gottlieb AB, Chaudhari U, Mulcahy LD, Li S, Dooley LT, Baker DG. Infliximab monotherapy provides rapid and sustained benefit for plaque-type psoriasis. J Am Acad Dermatol 2003;48:829–835.

    Article  PubMed  Google Scholar 

  97. Gottlieb AB, Evans R, Li S, et al. Infliximab induction therapy for patients with severe plaque-type psoriasis: A randomized, double-blind, placebo-controlled trial. J Am Acad Dermatol 2004;51:534–542.

    Article  PubMed  Google Scholar 

  98. Jacobi A, Antoni C, Manger B, Schuler G, Hertl M. Infliximab in the treatment of moderate to severe atopic dermatitis. J Am Acad Dermatol 2005;52:522–526.

    Article  PubMed  Google Scholar 

  99. Adams DR, Gordon KB, Devenyi AG, Ioffreda MD. Severe hidradenitis suppurativa treated with infliximab infusion. Arch Dermatol 2003;139: 1540–1542.

    Article  PubMed  Google Scholar 

  100. Lebwohl B, Sapadin AN. Infliximab for the treatment of hidradenitis suppurativa. J Am Acad Dermatol 2003;49:S275–6.

    Article  PubMed  Google Scholar 

  101. Sullivan TP, Welsh E, Kerdel FA, Burdick AE, Kirsner RS. Infliximab for hidradenitis suppurativa. Br J Dermatol 2003;149:1046–1049.

    Article  PubMed  CAS  Google Scholar 

  102. Papp KA, Miller B, Gordon KB, et al. Efalizumab retreatment in patients with moderate to severe chronic plaque psoriasis. J Am Acad Dermatol 2006;54:S164–70.

    Article  PubMed  Google Scholar 

  103. Gottlieb AB, Hamilton T, Caro I, et al. Longterm continuous efalizumab therapy in patients with moderate to severe chronic plaque psoriasis: updated results from an ongoing trial. J Am Acad Dermatol 2006;54:S154–63.

    Article  PubMed  Google Scholar 

  104. Norman R, Greenberg RG, Jackson JM. Case reports of etanercept in inflammatory dermatoses. J Am Acad Dermatol 2006;54:S139–42.

    Article  PubMed  Google Scholar 

  105. Minni J, Sarro R. A novel therapeutic approach to erythema annulare centrifugum. J Am Acad Dermatol 2006;54:S134–5.

    Article  PubMed  Google Scholar 

  106. Roy DB, Conte ET, Cohen DJ. The treatment of pyoderma gangrenosum using etanercept. J Am Acad Dermatol 2006;54:S128–34.

    Article  PubMed  Google Scholar 

  107. Kress DW. Etanercept therapy improves symptoms and allows tapering of other medications in children and adolescents with moderate to severe psoriasis. J Am Acad Dermatol 2006;54:S126–8.

    Article  PubMed  Google Scholar 

  108. Yamauchi PS, Turner L, Lowe NJ, Gindi V, Jackson JM. Treatment of recurrent sweet's syndrome with coexisting rheumatoid arthritis with the tumor necrosis factor antagonist etanercept. J Am Acad Dermatol 2006;54:S122–6.

    Article  PubMed  Google Scholar 

  109. Yamauchi PS, Lowe NJ, Gindi V. Treatment of coexisting bullous pemphigoid and psoriasis with the tumor necrosis factor antagonist etanercept. J Am Acad Dermatol 2006;54:S121–2.

    Article  PubMed  Google Scholar 

  110. Chen Q, Carroll HP, Gadina M. The newest interleukins: recent additions to the ever-growing cytokine family. Vitam Horm 2006;74:207–228.

    Article  PubMed  CAS  Google Scholar 

  111. Ferrarini M, Steen V, Medsger TA,Jr, Whiteside TL. Functional and phenotypic analysis of T lymphocytes cloned from the skin of patients with systemic sclerosis. Clin Exp Immunol 1990;79: 346–352.

    Article  PubMed  CAS  Google Scholar 

  112. Tredget EE, Yang L, Delehanty M, Shankowsky H, Scott PG. Polarized Th2 cytokine production in patients with hypertrophic scar following thermal injury. J Interferon Cytokine Res 2006;26:179– 189.

    Article  PubMed  CAS  Google Scholar 

  113. Molina V, Blank M, Shoenfeld Y. Fibrotic diseases. Harefuah 2002;141:973–8, 1009.

    PubMed  Google Scholar 

  114. Shahar I, Fireman E, Topilsky M, et al. Effect of IL-6 on alveolar fibroblast proliferation in interstitial lung diseases. Clin Immunol Immunopathol 1996;79:244–251.

    Article  PubMed  CAS  Google Scholar 

  115. Feghali CA, Bost KL, Boulware DW, Levy LS. Control of IL-6 expression and response in fibroblasts from patients with systemic sclerosis. Autoimmunity 1994;17:309–318.

    Article  PubMed  CAS  Google Scholar 

  116. Gurram M, Pahwa S, Frieri M. Augmented interleukin-6 secretion in collagen-stimulated peripheral blood mononuclear cells from patients with systemic sclerosis. Ann Allergy 1994;73:493–496.

    PubMed  CAS  Google Scholar 

  117. Feghali CA, Bost KL, Boulware DW, Levy LS. Mechanisms of pathogenesis in scleroderma. I. Overproduction of interleukin 6 by fibroblasts cultured from affected skin sites of patients with scleroderma. J Rheumatol 1992;19:1207–1211.

    PubMed  CAS  Google Scholar 

  118. Yang GP, Lim IJ, Phan TT, Lorenz HP, Longaker MT. From scarless fetal wounds to keloids: molecular studies in wound healing. Wound Repair Regen 2003;11:411–418.

    Article  PubMed  Google Scholar 

  119. Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 1994;271:907–913.

    Article  PubMed  CAS  Google Scholar 

  120. Atkins MB. Interleukin-2: clinical applications. Semin Oncol 2002;29:12–17.

    Article  PubMed  CAS  Google Scholar 

  121. Parkinson DR, Abrams JS, Wiernik PH, et al. Interleukin-2 therapy in patients with metastatic malignant melanoma: a phase II study. J Clin Oncol 1990;8:1650–1656.

    PubMed  CAS  Google Scholar 

  122. McDermott DF, Mier JW, Lawrence DP, et al. A phase II pilot trial of concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin 2, and interferon alpha-2B in patients with metastatic melanoma. Clin Cancer Res 2000;6:2201–2208.

    PubMed  CAS  Google Scholar 

  123. Spitler LE, Grossbard ML, Ernstoff MS, et al. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colonystimulating factor. J Clin Oncol 2000;18:1614–1621.

    PubMed  CAS  Google Scholar 

  124. Grabstein KH, Urdal DL, Tushinski RJ, et al. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science 1986;232:506–508.

    Article  PubMed  CAS  Google Scholar 

  125. Thomas P. IL-4 induced immune deviation as therapy of psoriasis. Arch Dermatol Res 2001;293:39.

    Google Scholar 

  126. Rook AH, Wood GS, Yoo EK, et al. Interleukin12 therapy of cutaneous T-cell lymphoma induces lesion regression and cytotoxic T-cell responses. Blood 1999;94:902–908.

    PubMed  CAS  Google Scholar 

  127. Kauffman CL, Aria N, Toichi E, et al. A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J Invest Dermatol 2004;123:1037–1044.

    Article  PubMed  CAS  Google Scholar 

  128. Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 2004;22:891–928.

    Article  PubMed  CAS  Google Scholar 

  129. Cyster JG. Chemokines, sphingosine-1—phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 2005;23:127–159.

    Article  PubMed  CAS  Google Scholar 

  130. Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 1997;385:640–644.

    Article  PubMed  CAS  Google Scholar 

  131. Kelner GS, Kennedy J, Bacon KB, et al. Lymphotactin: a cytokine that represents a new class of chemokine. Science 1994;266:1395–1399.

    Article  PubMed  CAS  Google Scholar 

  132. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354:610–621.

    Article  PubMed  CAS  Google Scholar 

  133. Teraki Y, Miyake A, Takebayashi R, Shiohara T. Homing receptor and chemokine receptor on intraepidermal T cells in psoriasis vulgaris. Clin Exp Dermatol 2004;29:658–663.

    Article  PubMed  CAS  Google Scholar 

  134. Flier J, Boorsma DM, van Beek PJ, et al. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J Pathol 2001;194:398–405.

    Article  PubMed  CAS  Google Scholar 

  135. Amgen-Tularik, Inc. Tularik initiates phase 2 clinical trial of T487 in psoriasis. http://wwwext.amgen. com/pdfs/tularik/TLRKT487Ph2_121003.pdf.

  136. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004;202:8–32.

    Article  PubMed  CAS  Google Scholar 

  137. Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membranebound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 2006;80:227–236.

    Article  PubMed  CAS  Google Scholar 

  138. Davison SP, Mess S, Kauffman LC, Al-Attar A. Ineffective treatment of keloids with interferon alpha-2b. Plast Reconstr Surg 2006;117:247–252.

    Article  PubMed  CAS  Google Scholar 

  139. Marchisone C, Benelli R, Albini A, Santi L, Noonan DM. Inhibition of angiogenesis by type I interferons in models of Kaposi's sarcoma. Int J Biol Markers 1999;14:257–262.

    PubMed  CAS  Google Scholar 

  140. Batres LA, Mamula P, Baldassano RN. Resolution of severe peristomal pyoderma gangrenosum with infliximab in a child with Crohn disease. J Pediatr Gastroenterol Nutr 2002;34:558–560.

    Article  PubMed  Google Scholar 

  141. Jenne L, Sauter B, Thumann P, Hertl M, Schuler G. Successful treatment of therapy-resistant chronic vegetating pyoderma gangrenosum with infliximab (chimeric antitumour necrosis factor antibody). Br J Dermatol 2004;150:380–382.

    Article  PubMed  CAS  Google Scholar 

  142. Mimouni D, Anhalt GJ, Kouba DJ, Nousari HC. Infliximab for peristomal pyoderma gangrenosum. Br J Dermatol 2003;148:813–816.

    Article  PubMed  CAS  Google Scholar 

  143. Haley H, Cantrell W, Smith K. Infliximab therapy for sarcoidosis (lupus pernio). Br J Dermatol 2004;150:146–149.

    Article  PubMed  CAS  Google Scholar 

  144. Menon Y, Cucurull E, Reisin E, Espinoza LR. Interferon-alpha-associated sarcoidosis responsive to infliximab therapy. Am J Med Sci 2004;328:173–175.

    Article  PubMed  Google Scholar 

  145. Sacher C, Rubbert A, Konig C, ScharffetterKochanek K, Krieg T, Hunzelmann N. Treatment of recalcitrant cicatricial pemphigoid with the tumor necrosis factor alpha antagonist etanercept. J Am Acad Dermatol 2002;46:113–115.

    Article  PubMed  Google Scholar 

  146. Berookhim B, Fischer HD, Weinberg JM. Treatment of recalcitrant pemphigus vulgaris with the tumor necrosis factor alpha antagonist etanercept. Cutis 2004;74:245–247.

    PubMed  Google Scholar 

  147. Ghoreschi K, Mrowietz U, Rocken M. A molecule solves psoriasis? Systemic therapies for psoriasis inducing interleukin 4 and Th2 responses. J Mol Med 2003;81:471–480.

    Article  PubMed  CAS  Google Scholar 

  148. Ghoreschi K, Thomas P, Breit S, et al. Interleukin4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med 2003;9:40–46.

    Article  PubMed  CAS  Google Scholar 

  149. Asadullah K, Sterry W, Stephanek K, et al. IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J Clin Invest 1998;101:783–794.

    Article  PubMed  CAS  Google Scholar 

  150. Asadullah K, Sabat R, Wiese A, Docke WD, Volk HD, Sterry W. Interleukin-10 in cutaneous disorders: implications for its pathophysiological importance and therapeutic use. Arch Dermatol Res 1999;291:628–636.

    Article  PubMed  CAS  Google Scholar 

  151. Asadullah K, Docke WD, Ebeling M, et al. Interleukin 10 treatment of psoriasis: clinical results of a phase 2 trial. Arch Dermatol 1999;135:187–192.

    Article  PubMed  CAS  Google Scholar 

  152. Reich K, Bruck M, Grafe A, Vente C, Neumann C, Garbe C. Treatment of psoriasis with interleukin10. J Invest Dermatol 1998;111:1235–1236.

    Article  PubMed  CAS  Google Scholar 

  153. Villadsen LS, Schuurman J, Beurskens F, et al. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J Clin Invest 2003;112:1571–1580.

    PubMed  CAS  Google Scholar 

  154. Krueger GG, Papp KA, Stough DB, et al. A randomized, double-blind, placebo-controlled phase III study evaluating efficacy and tolerability of 2 courses of alefacept in patients with chronic plaque psoriasis. J Am Acad Dermatol 2002;47:821–833.

    Article  PubMed  Google Scholar 

  155. Lebwohl M, Christophers E, Langley R, et al. An international, randomized, double-blind, placebocontrolled phase 3 trial of intramuscular alefacept in patients with chronic plaque psoriasis. Arch Dermatol 2003;139:719–727.

    Article  PubMed  CAS  Google Scholar 

  156. Gottlieb AB, Krueger JG, Wittkowski K, Dedrick R, Walicke PA, Garovoy M. Psoriasis as a model for T-cell-mediated disease: immunobiologic and clinical effects of treatment with multiple doses of efalizumab, an anti-CD11a antibody. Arch Dermatol 2002;138:591–600.

    Article  PubMed  CAS  Google Scholar 

  157. Lebwohl M, Tyring SK, Hamilton TK, et al. A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med 2003;349:2004–2013.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Perez, O.A., Berman, B. (2008). Cytokines and Chemokines. In: Gaspari, A.A., Tyring, S.K. (eds) Clinical and Basic Immunodermatology. Springer, London. https://doi.org/10.1007/978-1-84800-165-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-165-7_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-164-0

  • Online ISBN: 978-1-84800-165-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics