Skip to main content

Abstract

Identification of continuous-time (CT) systems is a fundamental problem that has applications in virtually all disciplines of science. Examples of mathematical models of CT phenomena appear in such diverse areas as biology, economics, physics, and signal processing. A small selection of references are cited below. Models in the economics of renewable resources, e.g., in biology, is discussed in [9]. Sunspot data modelling by means of CT ARMA models is carried out in [39]. Aspects of economic growth models is the topic of [59]. Models for stock-price fluctuations are discussed in [48] and stochastic volatility models of the short-term interest rate can be found in [2]. The use of Ito’s calculus in modern financial theory with applications in financial decision making is presented in [36]. Continuous-time models for the heat dynamics of a building is described in [35]. Modelling of random fatigue crack growth in materials can be found in [50], and models of human head movements appear in [20]. Identification of ship-steering dynamics by means of linear CT models and the maximum likelihood (ML) method is considered in [6]. Numerous other examples of applications of stochastic differential equations (SDEs) can be found in the literature. See, for example, [25, Chapter 7] where various modelling examples, including population dynamics, investment finance, radio-astronomy, biological waste treatment, etc. can be found.

This work was performed during Erik Larsson’s PhD studies at Uppsala University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.M. Adorf. Interpolation of irregularly sampled data series — a survey. Astronomical Data Analysis Software and Systems IV, 77:460–463, 1995.

    Google Scholar 

  2. T.G. Andersen and J. Lund. Estimating continuous-time stochastic volatility models of the short-term interest rate. Journal of Econometrics, 77:343–377, 1997.

    Article  MATH  Google Scholar 

  3. K.J. Åström. Maximum likelihood and prediction error methods. Automatica, 16:551–574, 1980.

    Article  MATH  Google Scholar 

  4. K.J. Åström. Introduction to Stochastic Control Theory. Dover Publications, New York, NY, 2006. First published by Academic Press, New York, NY, 1970.

    Google Scholar 

  5. K.J. Åström, P. Hagander, and J. Sternby. Zeros of sampled systems. Automatica, 20:31–38, 1984.

    Article  MATH  Google Scholar 

  6. K.J. Åström and C.G. Källström. Identification of ship steering dynamics. Automatica, 12:9–22, 1976.

    Article  Google Scholar 

  7. S. Bigi, T. Söderström, and B. Carlsson. An IV-scheme for estimating continuous-time stochastic models from discrete-time data. 10th IFAC Symposium on System Identification, Copenhagen, Denmark, July 1994.

    Google Scholar 

  8. Å. Björck and V. Pereyra. Solutions of Vandermonde systems of equations. Mathematics of Computation, 24:893–903, 1970.

    Article  MathSciNet  Google Scholar 

  9. C.W. Clark. Mathematical models in the economics of renewable resources. SIAM Review, 21:81–99, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  10. T.E. Duncan, P. Mandl, and B. Pasik-Duncan. Numerical differentiation and parameter estimation in higher-order linear stochastic systems. IEEE Transactions on Automatic Control, 41(4):522–532, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. T.E. Duncan, P. Mandl, and B. Pasik-Duncan. A note on sampling and parameter estimation in linear stochastic systems. IEEE Transactions on Automatic Control, 44(11):2120–2125, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Fan. An efficient order recursive algorithm with a lattice structure for estimating continuous-time AR process parameters. Automatica, 33:305–317, 1997.

    Article  MATH  Google Scholar 

  13. H. Fan and T. Söderström. Parameter estimation of continuous-time AR processes using integrated sampling. 36th IEEE Conference on Decision and Control, San Diego, CA, USA, December 1997.

    Google Scholar 

  14. H. Fan, T. Söderström, M. Mossberg, B. Carlsson, and Y. Zou. Estimation of continuous-time AR process parameters from discrete-time data. IEEE Transactions on Signal Processing, 47(5):1232–1244, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Fan, T. Söderström, and Y. Zou. Continuous-time AR process parameter estimation in presence of additive white noise. IEEE Transactions on Signal Processing, 47(12):3392–3398, 1999.

    Article  MATH  Google Scholar 

  16. P. Giannopoulos and S.J. Godsill. Estimation of CAR processes observed in noise using Bayesian inference. IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake City, UT, USA, May 2001.

    Google Scholar 

  17. J. Gillberg. Frequency domain identification of continuous-time systems. PhD thesis, Linköping University, Sweden, 2006.

    Google Scholar 

  18. J. Gillberg and L. Ljung. Frequency domain identification of continuous-time output error models from sampled data. 16th IFAC World Congress, Prague, Czech Republic, July 2005.

    Google Scholar 

  19. G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, 3rd edition, 1996.

    MATH  Google Scholar 

  20. J.J. Heuring and D.W. Murray. Modeling and copying human head movements. IEEE Transactions on Robotics and Automation, 15(6):1095–1108, 1999.

    Article  Google Scholar 

  21. E. Isaacson and H.B. Keller. Analysis of Numerical Methods. John Wiley and Sons, New York, NY, 1966.

    MATH  Google Scholar 

  22. C.V. Jakowatz (Jr.), D.E. Wahl, P.H. Eichel, D.C. Ghiglia, and P.A. Thompson. Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach. Kluwer Academic Publishers, Norwell, MA, 1996.

    Google Scholar 

  23. S.M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Upper Saddle River, NJ, 1993.

    MATH  Google Scholar 

  24. P. Kinahan, J. Fessler, and J. Karp. Statistical image reconstruction in PET with compensation for missing data. IEEE Transactions on Nuclear Science, 44(4, part 1):1552–1557, 1997.

    Article  Google Scholar 

  25. P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin/Heidelberg, Germany, 1992.

    MATH  Google Scholar 

  26. E.G. Larsson and E.K. Larsson. The Cramér-Rao bound for continuous-time AR parameter estimation with irregular sampling. Circuits, Systems & Signal Processing, 21:581–601, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  27. E.K. Larsson. Identification of Stochastic Continuous-Time Systems. PhD thesis, Uppsala University, Sweden, 2004.

    Google Scholar 

  28. E.K. Larsson. Limiting sampling results for continuous-time ARMA systems. International Journal of Control, 78:461–473, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  29. E.K. Larsson and E.G. Larsson. The CRB for parameter estimation in irregularly sampled continuous-time ARMA systems. IEEE Signal Processing Letters, 11(2):197–200, 2004.

    Article  Google Scholar 

  30. E.K. Larsson, M. Mossberg, and T. Söderström. An overview of important practical aspects of continuous-time ARMA system identification. Circuits, Systems & Signal Processing, 25:17–46, 2006.

    Article  MATH  Google Scholar 

  31. E.K. Larsson, M. Mossberg, and T. Söderström. Identification of continuous-time ARX models from irregularly sampled data. IEEE Transactions on Automatic Control, 52(3):417–427, 2007.

    Article  Google Scholar 

  32. E.K. Larsson and T. Söderström. Identification of continuous-time AR processes from unevenly sampled data. Automatica, 38:709–718, 2002.

    Article  MATH  Google Scholar 

  33. L. Ljung. System Identification. Theory for the User. Prentice-Hall, Upper Saddle River, NJ, 2nd edition, 1999.

    Google Scholar 

  34. L. Ljung. Initialisation aspects for subspace and output-error identification methods. 5th European Control Conference, Cambridge, UK, September 2003.

    Google Scholar 

  35. H. Madsen and J. Holst. Estimation of continuous-time models for the heat dynamics of a building. Energy and Buildings, 22:67–79, 1995.

    Article  Google Scholar 

  36. A.G. Malliaris. Ito’s calculus in financial decision making. SIAM Review, 25:481–496, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Mateo and P. Laguna. Improved heart rate variability signal analysis from the beat occurrence times according to the IPFM model. IEEE Transactions on Biomedical Engineering, 47(8):985–996, 2000.

    Article  Google Scholar 

  38. M. Mossberg. On identification of continuous-time systems using a direct approach. Licentiate thesis, Uppsala University, Sweden, 1998.

    Google Scholar 

  39. M.S. Phadke and S.M. Wu. Modeling of continuous stochastic processes from discrete observations with application to sunspots data. Journal of the American Statistical Association, 69(346):325–329, 1974.

    Article  MATH  Google Scholar 

  40. D.T. Pham. Estimation of continuous-time autoregressive model from finely sampled data. IEEE Transactions on Signal Processing, 48(9):2576–2584, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  41. R. Pintelon and J. Schoukens. System Identification: a Frequency Domain Approach. IEEE Press, Piscataway, USA, 2001.

    Google Scholar 

  42. G.P. Rao and H. Garnier. Numerical illustrations of the relevance of direct continuous-time model identification. 15th IFAC World Congress, Barcelona, Spain, July 2002.

    Google Scholar 

  43. G.P. Rao and H. Unbehauen. Identification of continuous-time systems. IEE Proceedings — Control Theory and Applications, 153(2):185–220, 2006.

    Article  Google Scholar 

  44. T.S. Rao, M.B. Pristley, and O. Lessi (eds). Applications of Time Series Analysis in Astronomy and Meteorology. Chapman & Hall/CRC Press, Boca Raton, FL, 1997.

    MATH  Google Scholar 

  45. A. Rivoira, Y. Moudden, and G. Fleury. Real time continuous AR parameter estimation from randomly sampled observations. IEEE International Conference on Acoustics Speech and Signal Processing, Orlando, FL, May 2002.

    Google Scholar 

  46. S. Sagara, Z.J. Yang, K. Wada, and T. Tsuji. Parameter identification and adaptive control of continuous systems with zero order hold. 12th IFAC World Congress, Sydney, Australia, July 1993.

    Google Scholar 

  47. J. Schoukens, R. Pintelon, and H. Van Hamme. Identification of linear dynamic systems using piecewise constant excitations: Use, misuse and alternatives. Automatica, 30:1153–1169, 1994.

    Article  MATH  Google Scholar 

  48. L. Shepp. A model for stock price fluctuations based on information. IEEE Transactions on Information Theory, 48(6):1372–1378, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  49. N.K. Sinha and G.P. Rao (eds). Identification of Continuous-time Systems. Methodology and Computer Implementation. Kluwer Academic Publishers, Dordrecht, 1991.

    MATH  Google Scholar 

  50. K. Sobczyk. Modelling of random fatigue crack growth. Engineering Fracture Mechanics, 24:609–623, 1986.

    Article  Google Scholar 

  51. T. Söderström. Algorithms for computing stochastic continuous time models from ARMA models. Technical Report UPTEC 89030 R, Uppsala University, Sweden, 1989.

    Google Scholar 

  52. T. Söderström. On the Cramér-Rao lower bound for estimating continuous-time autoregressive parameters. 14th IFAC World Congress, Beijing, P.R. China, July 1999.

    Google Scholar 

  53. T. Söderström. Discrete-time Stochastic Systems. Springer-Verlag, London, UK, 2nd edition, 2002.

    MATH  Google Scholar 

  54. T. Söderström, H. Fan, B. Carlsson, and S. Bigi. Least squares parameter estimation of continuous-time ARX models from discrete-time data. IEEE Transactions on Automatic Control, 42(5):659–673, 1997.

    Article  MATH  Google Scholar 

  55. T. Söderström, H. Fan, M. Mossberg, and B. Carlsson. Bias-compensating schemes for estimating continuous-time AR process parameters. 11th IFAC Symposium on System Identification, Kitakyushu, Japan, July 1997.

    Google Scholar 

  56. T. Söderström and M. Mossberg. Performance evaluation of methods for identifying continuous-time autoregressive processes. Automatica, 36:53–59, 2000.

    Article  MATH  Google Scholar 

  57. T. Söderström and P. Stoica. System Identification. Prentice-Hall, Hemel Hempstead, U.K., 1989.

    MATH  Google Scholar 

  58. P. Stoica and R. Moses. Spectral Analysis of Signals. Pearson Prentice-Hall, Upper Saddle River, NJ, 2005.

    Google Scholar 

  59. S.J. Turnovsky. Applications of continuous-time stochastic methods to models of endogenous economic growth. Annual Reviews in Control, 20:155–166, 1996.

    Article  Google Scholar 

  60. H. Unbehauen and G.P. Rao. Identification of Continuous Systems. North-Holland, Amsterdam, The Netherlands, 1987.

    MATH  Google Scholar 

  61. B. Wahlberg. Limit results for sampled systems. International Journal of Control, 48:1267–1283, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  62. B. Wahlberg. System identification using high-order models, revisited. 28th IEEE Conference on Decision and Control, Tampa, Florida, USA, December 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Larsson, E.K., Mossberg, M., Söderström, T. (2008). Estimation of Continuous-time Stochastic System Parameters. In: Garnier, H., Wang, L. (eds) Identification of Continuous-time Models from Sampled Data. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84800-161-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-161-9_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-160-2

  • Online ISBN: 978-1-84800-161-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics