Skip to main content

Output Synchronization of Nonlinear Systems with Relative Degree One

  • Conference paper
Recent Advances in Learning and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 371))

Abstract

In this paper we extend our earlier results on output synchronization of nonlinear passive systems to the case of nonlinear systems with relative degree one. It is well known [5] that weakly minimum phase systems with relative degree one are feedback equivalent to a passive system with a positive definite storage function. We exploit this feedback equivalence to develop control laws for output synchronization of such systems, exchanging outputs on balanced graphs, and in the presence of communication delays, and switching interconnection topologies. We further show that the balanced graph assumption can be removed provided the internal dynamics in the normal form are Input-to-State-Stable (ISS) for each agent. Simulation results are presented to verify the obtained results.

This research was partially supported by the Office of Naval Research under Grant N00014-02-1-0011, N00014-05-1-0186, and by the National Science Foundation under Grants ECS-0122412 and INT-0128656. The first author also acknowledges the support of the Faculty Startup Grant at the University of Maryland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcak, M.: Passivity as a design tool for group coordination. In: Proc. Amer Control Conf., Minneapolis, MN (2006)

    Google Scholar 

  2. Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multiagent coordination, consensus, and flocking. In: Proc. Joint Conf. Decision Control & Euro Control Conf. Seville, Spain (2005)

    Google Scholar 

  3. Branicky, M.: IEEE Trans. Autom. Control 43, 475–482 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Byrnes, C., Isidori, A.: IEEE Trans. Autom. Control 36, 1122–1137 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byrnes, C., Isidori, A., Willems, J.C.: IEEE Trans. Autom. Control 36, 1228–1240 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao, M., Morse, A.S., Anderson, B.D.O.: Reaching a consensus using delayed information. In: Proc. Conf. Decision Control, San Diego, CA (2006)

    Google Scholar 

  7. Chopra, N.: Output Synchronization of Networked Passive Systems. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana (2006)

    Google Scholar 

  8. Chopra, N., Spong, M.W.: Synchronization of networked passive systems with applications to bilateral teleoperation. In: Proc SICE Conf., Okayama, Japan (2005)

    Google Scholar 

  9. Chopra, N., Spong, M.W.: Passivity-based control of multi-agent systems. In: Kawamura, S., Svinin, M. (eds.) Advances in Robot Control: From Everyday Physics to Human-Like Movements, Springer, Heidelberg (2006)

    Google Scholar 

  10. Chopra, N., Spong, M.W.: Output synchronization of nonlinear systems with time delay in communication. In: Proc. Conf. Decision Control, San Diego, CA (2006)

    Google Scholar 

  11. Fax, J.A., Murray, R.M.: IEEE Trans. Autom. Control 49, 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  12. Godsil, C., Royle, G.: Algebraic graph theory. Springer Graduate Texts in Mathematics, vol. 207. Springer, Heidelberg (2001)

    Google Scholar 

  13. Hespanha, J.P., Liberzon, D., Angeli, D., Sontag, E.D.: IEEE Trans. Autom. Control 50, 154–168 (2005)

    Article  MathSciNet  Google Scholar 

  14. Isidori, A.: Nonlinear Control Systems. Springer, Berlin (1995)

    MATH  Google Scholar 

  15. Jadbabaie, A., Lin, J., Morse, A.S.: IEEE Trans. Autom. Control. 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  16. Justh, E.W., Krishnaprasad, P.S.: Syst. Control Lett. 52, 25–38 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Khalil, H.K.: Nonlinear systems. Prentice Hall, Upper Saddle River, New Jersey (2005)

    Google Scholar 

  18. Lee, D.J., Spong, M.W.: IEEE Trans. Autom. Control 52, 1469–1475 (2007)

    Article  MathSciNet  Google Scholar 

  19. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proc. Conf. Decision Control, Orlando, FL (2001)

    Google Scholar 

  20. Marshall, J.A., Broucke, M.E., Francis, B.A.: IEEE Trans. Autom. Control 49, 1963–1974 (2004)

    Article  MathSciNet  Google Scholar 

  21. Moreau, L.: IEEE Trans. Autom. Control 50, 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  22. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Proc. IEEE 95, 215–233 (2007)

    Article  Google Scholar 

  23. Olfati-Saber, R., Murray, R.M.: IEEE Trans. Autom. Control 49, 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  24. Pogromsky, A.Y., Nijmeijer, H.: IEEE Trans. Circ. Syst-1 48, 152–162 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pogromsky, A.Y.: Int. J. Bif Chaos 8, 295–319 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ren, W., Beard, R.W., Atkins, E.: IEEE Control Syst. Mag. 27, 71–82 (2007)

    Article  Google Scholar 

  27. Ren, W., Beard, R.W.: IEEE Trans. Autom. Control 50, 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  28. Reynolds, C.W.: Comput. Graph 21, 25–34 (1987)

    Article  Google Scholar 

  29. Sepulchre, R., Janković, M., Kokotović, P.V.: Constructive Nonlinear Control. Springer, London (1997)

    MATH  Google Scholar 

  30. Sepulchre, R., Paley, D., Leonard, N.: Collective motion and oscillator synchronization. In: Kumar, V., Leonard, N.E., Morse, A.S. (eds.) Cooperative Control. Lecture Notes in Control and Information Sciences, Springer, London (2004)

    Google Scholar 

  31. Slotine, J. J.E., Wang, W.: A study of synchronization and group cooperation using partial contraction theory. In: Kumar, V., Leonard, N.E., Morse, A.S. (eds.) Cooperative Control. Lecture Notes in Control and Information Sciences, Springer, London (2004)

    Google Scholar 

  32. Stan, G.B., Sepulchre, R.: IEEE Trans. Autom. Control 52, 256–270 (2007)

    Article  MathSciNet  Google Scholar 

  33. Tanner, H.G., Pappas, G.J., Kumar, V.: IEEE Trans. Robot. Autom. 20, 443–455 (2004)

    Article  Google Scholar 

  34. Tsitsiklis, J.N., Bertsekas, D.P., Athans, M.: IEEE Trans. Autom. Control 31, 803–812 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  35. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Schochet, O.: Phy. Rev. Lett. 75, 1226–1229 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chopra, N., Spong, M.W. (2008). Output Synchronization of Nonlinear Systems with Relative Degree One. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences, vol 371. Springer, London. https://doi.org/10.1007/978-1-84800-155-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-155-8_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-154-1

  • Online ISBN: 978-1-84800-155-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics