Passivity-based Stability of Interconnection Structures

  • Eduardo D. Sontag
  • Murat Arcak
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 371)


In the 1970s, Vidyasagar developed an approach to the study of stability of interconnected systems. This paper revisits this approach and shows how it allows one to interpret, and considerably extend, a classical condition used in mathematical biology.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vidyasagar, M.: Input-Output Analysis of Large Scale Interconnected Systems. Springer, Berlin (1981)MATHGoogle Scholar
  2. 2.
    Sundareshan, M.K., Vidyasagar, M.: l 2-stability of large-scale dynamical systems: Criteria via positive operator theory. IEEE Transactions on Automatic Control AC-22, 396–400 (1977)Google Scholar
  3. 3.
    Moylan, P.J., Hill, D.J.: Stability criteria for large-scale systems. IEEE Trans. Autom. Control 23(2), 143–149 (1978)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Arcak, M., Sontag, E.: Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica 42(9), 1531–1537 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Arcak, M., Sontag, E.D.: A passivity-based stability criterion for a class of interconnected systems and applications to biochemical reaction networks. Mathematical Biosciences and Engineering (to appear, 2007) (preprint: arxiv0705.3188vl [q-bio])Google Scholar
  6. 6.
    Sontag, E.D.: Passivity gains and the “secant condition” for stability. Systems Control Lett. 55(3), 177–183 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Tyson, J.J., Othmer, H.G.: The dynamics of feedback control circuits in biochemical pathways. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical Biology, vol. 5, pp. 1–62. Academic Press, London (1978)Google Scholar
  8. 8.
    Thron, CD.: The secant condition for instability in biochemical feedback control — Parts I and II. Bulletin of Mathematical Biology 53, 383–424 (1991)MATHGoogle Scholar
  9. 9.
    Goodwin, B.C.: Oscillatory behavior in enzymatic control processes. Adv. Enzyme Reg. 3, 425–439 (1965)CrossRefGoogle Scholar
  10. 10.
    Hastings, S.P., Tyson, J., Webster, D.: Existence of periodic orbits for negative feedback cellular control systems. Journal of Differential Equations 25(1), 39–64 (1977)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Glass, L., Pasternack, J.S.: Prediction of limit cycles in mathematical models of biological control systems. Bulletin of Mathematical Biology, 27–44 (1978)Google Scholar
  12. 12.
    Morales, M., McKay, D.: Biochemical oscillations in controlled systems. Biophys. J. 7, 621–625 (1967)CrossRefGoogle Scholar
  13. 13.
    Stephanopoulos, G.N., Aristidou, A.A., Nielsen, J.: Metabolic Engineering Principles and Methodologies. Academic Press, London (1998)Google Scholar
  14. 14.
    Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem 267, 1583–1588 (2000)CrossRefGoogle Scholar
  15. 15.
    Chitour, Y., Grognard, F., Bastin, G.: Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks and Heterogeneous Media 1, 219–239 (2006)MATHMathSciNetGoogle Scholar
  16. 16.
    Santos, S.D.M., Verveer, P.J., Bastiaens, P.I.H.: Growth factor induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nature Cell Biology 9, 324–330 (2007)CrossRefGoogle Scholar
  17. 17.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Society for Industrial and Applied Mathematics, Classics in Applied Mathematics, Philadelphia (1994)(Originally published by Academic Press, New York, 1979)Google Scholar
  18. 18.
    Sontag, E.D.: Some new directions in control theory inspired by systems biology. IET Systems Biology 1, 9–18 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eduardo D. Sontag
    • 1
  • Murat Arcak
    • 2
  1. 1.Department of MathematicsRutgers UniversityUSA
  2. 2.Department of Electrical, Computer, and Systems EngineeringRensselaer Polytechnic InstituteUSA

Personalised recommendations