Skip to main content

Infection in the intensive care unit

  • Chapter
Book cover Classic Papers in Critical Care
  • 3450 Accesses

Abstract

Intensive care units (ICUs) have contributed significantly to the outcome of patients with trauma, shock states, and other life-threatening conditions, but are associated with a greatly increased risk of nosocomial (hospital-acquired) infection. Rates of nosocomial infection in patients requiring >1 week of advanced life support within an ICU are 3-5-fold higher than in hospitalized patients who do not require ICU care, and approach 20–25%. Sepsis – occasionally from community-acquired infection, more often from infection acquired in the ICU – is the most frequent cause of multiple-organ dysfunction syndrome, and the leading cause of death in non-coronary care ICUs in the USA at the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

Related references

  1. Richards MJ, Edwards JR, Culver DH, Gaynes RP and the National Nosocomial Surveillance System. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol 2000; 21: 510–515.

    Article  CAS  PubMed  Google Scholar 

  2. Vincent J-L, Bihari DJ, Suter PM et al. The prevalence of nosocomial infection in intensive care units in Europe: results of the European prevalence of infection in intensive care (EPIC) study. JAMA 1995; 274: 639–644.

    Article  CAS  PubMed  Google Scholar 

  3. Kollet MH, Fraser VJ. Antibiotic resistance in the intensive care unit. Ann Intern Med 2001; 134: 298–314

    Google Scholar 

  4. CDC. Staphylococcus aureus resistant to vancomycin. MMWR 2002; 51: 565–566.

    Google Scholar 

Reference

Related references

  1. Weinstein MP, Pounds ML, Quartey SM et al. The clinical significance of positive blood cultures in the 1990s: a prospective, comprehensive evaluation of the microbiology, epidemiology and outcome of bacteremia and fungemia in adults. Clin Infect Dis 1997; 24: 584–602.

    CAS  PubMed  Google Scholar 

  2. Leibovici L, Shraga I, Drucker M et al. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 1998; 244: 379–386.

    Article  CAS  PubMed  Google Scholar 

  3. Feikin DR, Schuchat A, Kolczak M et al. Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995–1997. Am J Public Health 2000; 90: 223–229.

    Article  CAS  PubMed  Google Scholar 

  4. Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 2002; 136: 834–844.

    PubMed  Google Scholar 

Reference

Related references

  1. Drusano GL. Human pharmacodynamics of beta-lactams, aminoglycosides and the combination. Scand J Infect Dis 1991; 74 (Suppl): 235–248.

    Google Scholar 

  2. Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 1987; 155: 93–99.

    CAS  PubMed  Google Scholar 

  3. Prins JM, Buller HR, Kuijper EJ, Tange RA, Speelman P. Once versus thrice daily gen-tamicin in patients with serious infections. Lancet 1993; 341: 335–339.

    Article  CAS  PubMed  Google Scholar 

  4. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmaco-dynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37: 1073–1081.

    CAS  PubMed  Google Scholar 

  5. Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF. Pharmaco-dynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2001; 45: 2793–2797.

    Article  CAS  PubMed  Google Scholar 

Reference

Related references

  1. Pestotnik SL, Classen DC, Evans RS, Burke JP. Implementing antibiotic practice guidelines through computer-assisted decision support: clinical and financial outcomes. Ann Intern Med 1996; 124: 884–890.

    CAS  PubMed  Google Scholar 

  2. Burke JP, Pestotnik SL. Antibiotic use and microbial resistance in intensive care units: impact of computer-assisted decision support. J Chemother 1999; 11: 530–535.

    CAS  PubMed  Google Scholar 

  3. Evans RS, Pestotnik SL, Classen DC, Burke JP. Evaluation of a computer-assisted antibiotic-dose monitor. Ann Pharmacother 1999; 33: 1026–1031.

    Article  CAS  PubMed  Google Scholar 

Reference

Related references

  1. Sterling TR, Ho EJ, Brehm WT, Kirkpatrick MB. Diagnosis and treatment of ventilator-associated pneumonia–impact on survival. A decision analysis. Chest 1996; 110: 1025–1034.

    Article  CAS  PubMed  Google Scholar 

  2. Luna CM, Vujacich P, Niederman MS et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 1997; 111: 676–685.

    Article  CAS  PubMed  Google Scholar 

  3. Bonten MJ, Bergmans DC, Stobberingh EE et al. Implementation of bronchoscopic techniques in the diagnosis of ventilator-associated pneumonia to reduce antibiotic use. Am J Respir Crit Care Med 1997; 156: 1820–1824.

    CAS  PubMed  Google Scholar 

  4. Heyland DK, Cook DJ, Marshall J et al. The clinical utility of invasive diagnostic techniques in the setting of ventilator-associated pneumonia. Canadian Critical Care Trials Group. Chest 1999; 115: 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  5. Papazian L, Thomas P, Garbe L et al. Bronchoscopic or blind sampling techniques for the diagnosis of ventilator-associated pneumonia. Am J Respir Crit Care Med 1995; 152: 1982–1991.

    CAS  PubMed  Google Scholar 

  6. Marquette CH, Georges H, Wallet F et al. Diagnostic efficiency of endotracheal aspirates with quantitative bacterial cultures in intubated patients with suspected pneumonia. Comparison with the protected specimen brush. Am Rev Respir Dis 1993; 148: 138–144.

    CAS  PubMed  Google Scholar 

  7. Mayhall CG. Ventilator-associated pneumonia or not? Contemporary diagnosis. Emerg Infect Dis 2001; 7: 200–204.

    Article  CAS  PubMed  Google Scholar 

Reference

Related references

  1. Hatherill M, Tibby SM, Sykes K, Turner C, Murdoch IA. Diagnostic markers of infection: comparison of procalcitonin with C-reactive protein and leukocyte count. Arch Dis Child 1999; 81: 417–421.

    Article  CAS  PubMed  Google Scholar 

  2. Brunkhorst FM, Eberhard OK, Brunkhorst R. Discrimination of infectious and noninfec-tious causes of early acute respiratory distress syndrome by procalcitonin. Crit Care Med 1999; 27: 2172–2176.

    Article  CAS  PubMed  Google Scholar 

  3. Carlet J. Rapid diagnostic methods in the detection of sepsis. Infect Dis Clin North Am 1999; 13: 483–494.

    Article  CAS  PubMed  Google Scholar 

Reference

Related references

  1. Schaad UB, Suter S, Gianella-Borradori A et al. A comparison of ceftriaxone and cefuroxime for the treatment of bacterial meningitis in children. N Engl J Med 1990; 322: 141–147.

    CAS  PubMed  Google Scholar 

  2. Schuchat A, Robinson K, Wenger JD et al. Bacterial meningitis in the United States in 1995. Active Surveillance Team. N Engl J Med 1997; 337: 970–976.

    Article  CAS  PubMed  Google Scholar 

  3. Roos KL, Tunkel AR, Scheld WM. Acute bacterial meningitis in children and adults. In: Scheld WM, Whitley RJ, Durack DT, eds. Infections of the Central Nervous System, 2nd edn. Philadelphia: Lippincott-Raven Publishers, 1997: 335–401.

    Google Scholar 

Reference

Related references

  1. Schaad UB, Lips U, Gnehm HE, Blumberg A, Heinzer I, Wedgwood J, for the Swiss Meningitis Study Group. Dexamethasone therapy for bacterial meningitis in children. Lancet 1993; 342: 457–461.

    Article  CAS  PubMed  Google Scholar 

  2. Girgis NI, Farid Z, Kilpatrick ME, Bishai E. Dexamethasone for the treatment of children and adults with bacterial meningitis. Rev Infect Dis 1990; 12: 963–964.

    CAS  PubMed  Google Scholar 

  3. Odio CM, Faingezicht I, Paris M et al. The beneficial effects of early dexamethasone administration in infants and children with bacterial meningitis. N Engl J Med 1991; 324: 1525–1531.

    Article  CAS  PubMed  Google Scholar 

  4. McIntyre PB, Berkey CS, King SM et al. Dexamethasone as adjunctive therapy in bacterial meningitis. A meta-analysis of randomized clinical trials since 1988. JAMA 1997; 278: 925–931.

    Article  CAS  PubMed  Google Scholar 

Reference

Related references

  1. McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin 2001; 17: 107–124.

    Article  CAS  PubMed  Google Scholar 

  2. Malmberg K. Prospective randomised study of intensive insulin treatment on long-term survival after acute myocardial infarction in patients with diabetes mellitus. BMJ 1997; 314: 1512–1515.

    CAS  PubMed  Google Scholar 

  3. Malmberg K, Ryden L, Efendic S et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI Study): effects on mortality at 1 year. J Am Coll Cardiol 1995; 26: 57–65.

    Article  CAS  PubMed  Google Scholar 

  4. Hawthorne G, Irgens LM, Lie RT Outcome of pregnancy in diabetic women in Northeast England and in Norway, 1994–97. BMJ 2000; 321: 730–731.

    Article  CAS  PubMed  Google Scholar 

Reference

Related references

  1. Crnich CJ, Maki DG. The promise of novel technology for the prevention of intravas-cular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin Infect Dis 2002; 34: 1232–1242.

    Article  PubMed  Google Scholar 

  2. Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S. Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med 2002; 136: 792–801.

    CAS  PubMed  Google Scholar 

  3. Maki DG, Stolz SM, Wheeler S, Mermel LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med 1997; 127: 257–266.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Maki, D.G. (2008). Infection in the intensive care unit. In: Fink, M., Hayes, M., Soni, N. (eds) Classic Papers in Critical Care. Springer, London. https://doi.org/10.1007/978-1-84800-145-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-145-9_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-005-0

  • Online ISBN: 978-1-84800-145-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics