Skip to main content

An Overview of Reliability and Failure Mode Analysis of Microelectromechanical Systems (MEMS)

  • Chapter
Handbook of Performability Engineering

Abstract

The reliability issues concerning on microelectromechanical systems (MEMS) have steadily developed in recent years. One of the processes to understand MEMS reliability is to know the failure modes of these microdevices. In this chapter, we seek to report on both well known and unknown failure modes of MEMS. Most of the failure patterns are the same in nanoelectromechanical systems (NEMS), because NEMS followed a developmental path similar to that of MEMS in functional design, materials, and fabrication. Therefore, the existing results of MEMS failure modes can be used as a reference to nanoscale system reliability research. The failure modes discussed in this chapter contain stiction, wear, fracture, crystallographic defect, creep, degradation of dielectrics, environmentally induced failure, electric related failure, parasitic capacitance, dampening effects, delamination, and packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Silva GA. Introduction to nanotechnology and its applications to medicine. Surgical Neurology 2004; 61(3):216–220.

    Article  Google Scholar 

  2. Petersen K. Bringing MEMS to market. IEEE Solid State Sensors and Actuators Workshop 2000; 60–64.

    Google Scholar 

  3. Walraven JA, Introduction to applications and industries for microelectromechanical systems (MEMS). Sandia National Laboratories, Albuquerque, NM, 2000.

    Google Scholar 

  4. Maboudian R, Howe RT. Critical review: Adhesion in surface micromechanical structures. Journal of Vacuum Science and Technology 1997;15(1): 1–20

    Google Scholar 

  5. Kim BH, Chung TD, Oh CH. A new organic modifier for anti-stiction. Journal of Microelectromechanical Systems 2001;10(1):33–40.

    Article  Google Scholar 

  6. Zhao YP. Stiction and anti-stiction in MEMS and NEMS. Acta Mechanica Sinica 2003;19(1)1:1–10.

    Article  Google Scholar 

  7. Yee Y, Park M, Chun K, A sticking model of suspended polysilicon microstructure including residual stress gradient and postrelease temperature. Journal of Microelectromechanical Systems 1998;7(3):339–344.

    Article  Google Scholar 

  8. de Boer MP, Tabbara MR, Dugger MT, Clews PJ, Michalske TA. Measuring and modeling electrostatic adhesion in micromachines.IEEE International Conference on Solid State Sensors and Actuators 1997;1:229–232.

    Article  Google Scholar 

  9. de Boer MP, Knapp JA, Mayer TM, Michalske TA. The role of interfacial properties on MEMS Performance and Reliability. Proceedings SPIE 1999; 3825:2–15.

    Article  Google Scholar 

  10. de Boer MP, Michalske TA. Accurate method for determining adhesion of cantilever beams. Journal of Applied Physics 1999;86(22):817–827.

    Article  Google Scholar 

  11. Bowden FP, Tabor D. Friction and lubrication of solids. Clarendon Press, Oxford, 1950.

    Google Scholar 

  12. Mastrangelo CH, Hsu CH. A simple experimental technique for the measurement of the work of adhesion of microstructures. Proceedings IEEE Solid-State Sensor and Actuator Workshop 1992;208–214.

    Google Scholar 

  13. Buks E, Roukes ML, Stiction. Adhesion energy, and the Casimir effect in micromechanical systems. Physical Review B 2001; 63(3): 033402.

    Article  Google Scholar 

  14. Svetovoy VB, Lokhanin MV. Precise calculation of the Casimir force between gold surfaces. Modern Physics Letters A 2000; 15(22–23):1437–1444.

    Article  Google Scholar 

  15. Pinto F. Computational considerations in the calculation of the Casimir force between multilayered systems. International Journal of Modern Physics A 2004;19(24):4069–4084.

    Article  MATH  Google Scholar 

  16. Lamoreaux SK. Calculation of the Casimir force between imperfectly conducting plates. Physical Review A — Atomic, Molecular, and Optical Physics 1999;59(5):3149–3153.

    Article  Google Scholar 

  17. Boström M, Sernelius BE. Comment on “Calculation of the Casimir force between imperfectly conducting plates”. Physical Review A — Atomic, Molecular, and Optical Physics 2000; 61(4): 461011–461013.

    Google Scholar 

  18. van Spengen WM, Puers R, de Wolf I. A physical model to predict stiction in MEMS. Journal of Micromechanical and Microengineering 2002;12: 702–713.

    Article  Google Scholar 

  19. Spierings GACM, Haisma J, Diversity and interfacial phenomena in direct bonding. Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, Phoenix, AZ 1991; 92(7):18–32.

    Google Scholar 

  20. Backlund Y, Hermansson K, Smith L. Bondstrength measurements related to silicon surface hydrophilicity. Journal of the Electrochemical Society 1992;139(8):2299–2301.

    Article  Google Scholar 

  21. Alley RL, Cuan GJ, Howe RT, Komvopoulus K. The effect of release-etch processing on surface microstructure stiction. Proceedings IEEE Solid-State Sensors and Actuators Workshop 1992; 202–207.

    Google Scholar 

  22. Tasy N, Sonnenberg T, Jansen H, Legtenberg R, Elwenspoek M. Stiction in surface micromachining. Jounal of Micromechical Microengineering 1996; 6:385–397.

    Article  Google Scholar 

  23. DiBenedetto AT. The structure and properties of materials. McGraw-Hill, New York, 1967.

    Google Scholar 

  24. Tanner DM, Dugger MT. Wear mechanisms in a reliability methodology. Proceedings of SPIE — The International Society for Optical Engineering 2003; 4980:22–40.

    Google Scholar 

  25. Ashursta WR, de Boer MP, Carraro C, Maboudian R. An investigation of sidewall adhesion in MEMS. Applied Surface Science 2003;212:735–741.

    Article  Google Scholar 

  26. Suh AY, Polycarpou AA. Adhesion and pull-off forces for polysilicon MEMS surfaces using the sub-boundary lubrication model. Journal of Tribology 2003;125:193–199.

    Article  Google Scholar 

  27. Morrow CA, Lovell MR. A solution for lightly loaded adhesive rough surfaces with application to MEMS. Transactions of the ASME 2005;127: 206–212.

    Article  Google Scholar 

  28. Ali SM, Phinney LM. Investigation of adhesion during operation of MEMS cantilevers. Proceedings of SPIE 2004;5343.

    Google Scholar 

  29. Tambe NS, Bhushan B. Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. Nanotechnology 2004;15:1561–1570.

    Article  Google Scholar 

  30. Ikramov U, Machkamov KC, Calculation and Prediction of Abrasive Wear. Verlag Technik, Berlin, 1987.

    Google Scholar 

  31. Winter H, Plewe HJ. Abrasive wear and endurance calculation for lubricated, low-speed gears, part II: Calculation methods and damages limits. Anteriebstechnik 1982;21: 282–286.

    Google Scholar 

  32. Putilov YY, Putilova IV. Calculations of the abrasive wear of pipelines of the ash and coal dust pneumatic-transport facilities of thermal power stations. Thermal Engineering 2003;50(9):765–771.

    Google Scholar 

  33. Ovchinnikov IG, Pochtman YM. Calculation and rational design of structures subjected to corrosive wear. Soviet Materials Science 1991;27(2):105–116.

    Article  Google Scholar 

  34. Zwierzycki W, Stachowiak A. Corrosive and mechanical wear calculation. Scientific Papers of the Institute of Machine Design and Operation of the Technical University of Wroclaw 2002; 87(27): 366–371.

    Google Scholar 

  35. Jones PT, et al., Statistical characterization of fracture of brittle MEMS materials. Proceedings SPIE 1999; 3880: 20–29.

    Article  Google Scholar 

  36. Hu S. Critical Stress in silicon brittle fracture, and effect of ion implantation and other surface treatments. Journal of Applied Physics 1982; 53: 3576–3580.

    Article  Google Scholar 

  37. Tas NR, Gui C, Elwenspoek M. Static friction in elastic adhesive MEMS contacts, models and experiment. Proceedings of IEEE Transactions on Electron Packaging Manuf. 2000; 193–198.

    Google Scholar 

  38. Cauley TH III, Rosario JD, Pisano AP. Feasibility study of a MEMS viscous rotary engine power system (VREPS). American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED 2004; 260:301–308

    Google Scholar 

  39. Wolter A, Schenk H, Korth H, Lakner H. Torsional stress, fatigue and fracture strength in silicon hinges of a micro scanning mirror. Proceedings of SPIE 2004; 5343:176–185.

    Article  Google Scholar 

  40. Allameh SM, Shrotriya P, Butterwick A, Brown SB, Soboyejo WO. Surface topography evolution and fatigue fracture in polysilicon MEMS structures. Journal of Microelectromechanical Systems 2003;12(3): 313–324.

    Article  Google Scholar 

  41. Jones PT, Johnson GC, Howe RT. Fracture strength of polycrystalline silicon. Microelectromechanical Structures for Materials Research 1998; 27: 197–202.

    Google Scholar 

  42. Varvani-Farahani A. Silicon MEMS components: a fatigue life assessment approach. Microsystem Technologies 2005;11:129–134.

    Google Scholar 

  43. Hu B, Takahashi H. Effects of helium on behavior of point defect produced by irradiation in low activation Fe-Cr-Mn (M, V) alloys. Acta Metallurgica Sinica 2004; 40(9): 955–961.

    Google Scholar 

  44. Hao YL, Yang R, Song Y, Cui YY, Li D, Niinomi M. Concentration of point defect and site occupancy behavior in ternary NiAl alloys. Materials Science and Engineering A 2004; 365;(1–2): 85–89.

    Article  Google Scholar 

  45. Tuomisto F, Saarinen K. Introduction and recovery of point defects in electron-irradiated ZnO. Physical Review B 2005; 72: 85206–85206.

    Article  Google Scholar 

  46. Cândido L, Phillips P, Ceperley DM. Single and paired point defects in a 2D Wigner crystal. Physical Review Letters 2001; 86(3): 492–495.

    Article  Google Scholar 

  47. Tregilgas JH. Micromechanical device having an improved beam. Texas Instruments Inc., United States Patent, 1996; 5:552,924.

    Google Scholar 

  48. Modlinski R, Witvrouw A, Ratchev P, Jourdain A, Simons V, Tilmans HAC, den Toonder JMJ, Puers R, de Wolf I. Creep as a Reliability problem in MEMS. Microelectronics Reliability 2004:44; 1733–1738.

    Article  Google Scholar 

  49. Modlinski R, Witvrouw A, Ratchev P, Puers R, den Toonder JMJ, de Wolf I. Creep characterization of Al alloy thin films for use in MEMS applications. Microelectronic Engineering 2004; 76: 272–278.

    Article  Google Scholar 

  50. Modlinski R, Ratchev P, Witvrouw A, Puers R, de Wolf I. Creep-resistant aluminum alloys for use in MEMS. Journal of Micromechanical Microengineering 2005; 15: 165–170.

    Article  Google Scholar 

  51. Tuck K, Jungen A, Geisberger A, Ellis M, Skidmore G. A study of creep in polysilicon MEMS devices. Journal of Engineering Materials and Technology 2005; 127: 90–96.

    Article  Google Scholar 

  52. Wibbeler J, Pfeifer G, Hietschold M. Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sensors and Actuators A 1998; 71: 74–80.

    Article  Google Scholar 

  53. Caffey JR, Kladitis PE. The effects of ionizing radiation on microelectromechanical systems (MEMS) actuators: Electrostatic, electrothermal, and bimorph. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 2004; 133–136.

    Google Scholar 

  54. Ribes G, Mitard J, Denais M, Bruyere S, Monsieur F, Parthasarathy C, et al., Review on high-k dielectrics reliability issues. IEEE Transactions on Device and Materials Reliability 2005; 5(1):5–19.

    Article  Google Scholar 

  55. Bruyère S, Vincent E, Ghibaudo G. Quasibreakdown in ultrathin SiO films: Occurrence characterization and reliability assessment methodology. Proceedings of the IEEE International Reliability Physics Symposium, San Jose, CA April 10–12, 2000; 48–54.

    Google Scholar 

  56. Luo W, Kuo Y, Kuo W. Dielectric relaxation and breakdown detection of doped tantalum oxide high-k thin films. IEEE Transactions on Device and Materials Reliability 2004; 4(3): 488–494.

    Article  Google Scholar 

  57. Tsaur J, Onodera K, Kobayashi T, Ichiki M, Maeda R, Suga T. Wideband and high reliability RF-MEMS switches using PZT/HFO2 multilayered high-k dielectrics. Proceedings of 42nd Annual IEEE International Reliability Physics Symposium June 2004; 259–264.

    Google Scholar 

  58. Lee SS, Motamedi E, Wu MC. G-performance characterization of surface-micromachined FDDT Optical Bypas Switches. Proceedings of SPIE 1997; 3226: 94–101.

    Article  Google Scholar 

  59. Huang LS, Lee SS, Motamedi E, Wu MC, Kim CJ. MEMS packaging for micro mirror switches. Proceedings of 4th Electronic Components and Technology Conference, Seattle, WA, May 25–28 1998; 593–597.

    Google Scholar 

  60. Tanner DM, Walraven JA, Helgesen KS, Irwin LW, Gregory DL, Stake JR, et al., MEMS reliability in a vibration environment. IEEE International Reliability Physics Symposium 2000; 139–145.

    Google Scholar 

  61. Zhang W, Meng G. Active vibration control of micro-cantilever beam in MEMS. Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation, Chengdu, China August 2004: 272–276.

    Google Scholar 

  62. Petitgrand S, Bosseboeuf A. Simultaneous mapping of out-of-plane and in-plane vibrations of MEMS with (sub)nanometer resolution. Journal of Micromechical Microengineering 2004;14:S97–S101.

    Article  Google Scholar 

  63. van Spengen WM, Puers R, Mertens R, de Wolf I. Characterization and failure analysis of MEMS: High resolution optical investigation of small out-of-plane movements and fast vibrations. Microsystem Technologies 2004;10: 89–96.

    Article  Google Scholar 

  64. Li HH, Gaspar J, Freitas PP, Chu V, Conde JP. MEMS microbridge vibration monitoring using spin-valve sensors. IEEE Transactions on Magnetics 2002;38(5):3371–3373.

    Article  Google Scholar 

  65. Tanner DM, Walraven JA, Helgesen K, Irwin LW, Brown F, Smith NF, et al., MEMS reliability in shock environments. IEEE International Reliability Physics Symposium in San Jose, CA 2000; 129–138.

    Google Scholar 

  66. Millet O, Collard D, Buchaillot L. Reliability of packaged MEMS in shock environment. Crack and stiction modeling. Proceedings of SPIE 2002; 4755: 696–703.

    Google Scholar 

  67. de Coster J, Tilmans HAC, van Beek JTM, Rijks TGSM, Puers R. The influence of mechanical shock on the operation of electrostatically driven RF-MEMS switches. Journal of Micromechical Microengineering 2004;14: S49–S54.

    Article  Google Scholar 

  68. Wagner U, Franz J, Schweiker M, Bernhard W, Müller-Fiedler R, Michel B, et al., Mechanical reliability of MEMS-structures under shock load. Microelectronics Reliability 2001;41:1657–1662.

    Article  Google Scholar 

  69. Jiang YQ, Du MH, Huang WD, Xu W, Luo L. Simulation on the encapsulation effect of the high-G shock MEMS accelerometer. Proceedings of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis 2004; 353–358.

    Google Scholar 

  70. de Boer MP, Clews PJ, Smith BK, Michalske TA. Adhesion of polysilicon microbeams in controlled humidity ambients. Materials Research Society Symposium — Proceedings 1998; 518: 131–136.

    Google Scholar 

  71. Tanner DM, Walraven JA, Irwin LW, Dugger MT, Smith NF, Eaton WP, Miller WM, Miller SL. The effect of humidity on the reliability of a surface micromachined microengine. Proc. of IEEE International Reliability Physics Symposium 1999: 189–197

    Google Scholar 

  72. Phinney LM, Klody KA, Sackos JT, Walraven JA, Repair of stiction-failed, surface-micromachined polycrystalline silicon cantilevers using pulsed lasers. Proceedings of SPIE 2000; 4174: 279–287.

    Article  Google Scholar 

  73. Edmonds LD, Swift GM, Lee CI. Radiation response of a MEMS accelerometer: An electrostatic force. IEEE Transactions on Nuclear Science 1995;45(6): 2779–2788.

    Article  Google Scholar 

  74. Knudson AR, Buchner S, McDonald P, Stapor WJ, Campbell AB, Grabowski KS, et al., The effects of radiation on MEMS accelerometers. IEEE Transactions on Nuclear Science1996; 43(6): 3122–3126.

    Article  Google Scholar 

  75. van Spengen WM. MEMS reliability from a failure mechanisms perspective. Microelectronics Reliability 2003; 43: 1049–1060.

    Article  Google Scholar 

  76. Kolpekwar A, Jiang T, Blanton RDS. CARAMEL: contamination and reliability analysis of microelectromechanical layout. Journal of Microelectromechanical Systems 1999;8(3):309–318.

    Article  Google Scholar 

  77. Sellars AG, Farish O, Hampton BF. Assessing the risk of failure due to particle contamination of GIS using the UHF technique. IEEE Transactions on Dielectrics and Electrical Insulation 1994; 1(2): 323–331.

    Article  Google Scholar 

  78. Jiang T, Blanton RDS. Particulate failures for surface-micromachined MEMS. IEEE International Test Conference (TC) 1999; 329–337.

    Google Scholar 

  79. Schjolberg-Henriksen K, Jensen GU, Hanneborg A, Jakobsen H. Sodium contamination in integrated MEMS packaged by anodic bonding. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS) 2003;626–629.

    Google Scholar 

  80. Willis B. Secondary reflow failure-another lead contamination defect. Global SMT and Packaging 2003;4(1): 4–5.

    MathSciNet  Google Scholar 

  81. Zhu Y, Espinosa HD. Reliability of capacitive RF MEMS switches at high and low temperatures. International Journal of RF and Microwave Computer-Aided Engineering 2004; 14(4):317–328.

    Article  Google Scholar 

  82. Jennings JM, Phinney LM. The effects of temperature on surface adhesion in MEMS Structures. Proceedings of SPIE 2000; 4180:66–75.

    Article  Google Scholar 

  83. Lian K, Jiang JC, Ling ZG, Meletis EI. Temperature effects on microstructural evolution and resulting surface mechanical properties of Nibased MEMS structures. Proceedings of SPIE 2003; 4980: 192–199.

    Article  Google Scholar 

  84. Duvvury C, Amerasekera A. ESD: A pervasive rreliability concern for IC technologies. IEEE Proceedings. 1993; 8: 690–702.

    Article  Google Scholar 

  85. Lee JC, Hoque A, Croft GD, Liou JJ, Young R, Bernier JC. An electrostatic discharge failure mechanism in semiconductor devices, with applications to electrostatic discharge measurements using transmission line pulsing technique. Solid-State Electronics 2000;44: 1771–1781

    Article  Google Scholar 

  86. Wairaven JA, Soden JM, Tanner DM, Tangyunyong P, Cole EI Jr., Anderson RE, et al., Electrostatic discharge/electrical overstress susceptibility in MEMS: A new failure mode. Proceedings of SPIE 2000; 4180: 30–39.

    Article  Google Scholar 

  87. Walraven JA, Weiss J, Baker MS, Plass RA, Shaw MJ, Aldridge C. Failure analysis of electrothermal actuators subjected to electrical overstress (EOS) and electrostatic discharge (ESD). Proceedings of the 30th International Symposium for Testing and Failure Analysis, Worcester, MA; 2004: 225–231.

    Google Scholar 

  88. Yeh ECC, Choi WJ, Tu KN, Elenius P, Balkan H. Current-crowding-induced electromigration failure in flip chip solder joints. Applied Physics Letters 2002; 80(4): 580–582.

    Article  Google Scholar 

  89. Ogurtani TO, Oren EE. Electromigration-induced void grain-boundary interactions: The mean time to failure for copper interconnects with bamboo and near-bamboo structures. Journal of Applied Physics 2004; 96(12): 7246–7253.

    Article  Google Scholar 

  90. Lin YH, Tsai CM, Hu YC, Lin YL, Kao CR. Electromigration-induced failure in flip-chip solder joints. Journal of Electronic Materials 2005; 34(1): 27–33.

    Article  Google Scholar 

  91. Nah JW, Suh JO, Tu KN. Effect of current crowding and joule heating on electromigrationinduced failure in flip chip composite solder joints tested at room temperature. Journal of Applied Physics 2005;98: 13715.

    Article  Google Scholar 

  92. Padhia D, Dixit G. Effect of electron flow direction on model parameters of electromigration-induced failure of copper interconnects. Journal of Applied Physics 2003; 94(10): 6463–6467.

    Article  Google Scholar 

  93. Waliash A, Levit L. Electrical breakdown and ESD phenomena for devices with nanometer-tomicron gaps. Proceedings of SPIE 2003; 4980: 87–96.

    Article  Google Scholar 

  94. Vorobev GA, Ekhanin SG, Nesmelov NS. Electrical breakdown in solid dielectrics. Physics of the Solid State 2005; 47(6): 1083–1087.

    Article  Google Scholar 

  95. Edward GP. Preventing EMP/EMI sheilding failure in cables resulting from backshell adapter coupling separations. Annual Connectors and Interconnection Technology Symposium Proceedings, San Diego, CA; 1991:445–453.

    Google Scholar 

  96. Shoup RW, Hanson RJ, Durgin DL. Evaluation of EMP failure models for discrete semiconductor devices. IEEE Transactions on Nuclear Science NS-1981; 28(6): 4328–4333.

    Article  Google Scholar 

  97. Rabinovitch A, Frid V, Bahat D. Note on the Amplitude-frequency relation of electromagnetic radiation pulses induced by material failure. Philosophical Magazine Letters 1999;79(4):195–200.

    Article  Google Scholar 

  98. Gooch R, Schimert T. Low-cost wafer level vacuum packaging for MEMS. MRS Bulletin 2003; 28(1): 55–59.

    Google Scholar 

  99. Chavan AV, Wise DW. Batch-processed vacuumsealed capacitive pressure sensors. Journal of Microelectromechanical Systems 2001;10(4): 580–588.

    Article  Google Scholar 

  100. Kobayashi S, Hara T, Oguchi T, Asaji Y, Yaji K, Ohwada K. Double-frame silicon gyroscope packaged under low pressure by wafer bonding. Transducers Sendai, Japan; 1999; 910–913.

    Google Scholar 

  101. Esashi M, Ura N, Matsumoto Y. Anodic bonding for integrated capacitive sensors. Proceedings MicroelectroMech Systems 1992; 92:43–48.

    Google Scholar 

  102. Sung-Hoon Choa. Reliability of MEMS packaging: Vacuum maintenance and packaging induced stress. Microsystem Technology 2005; 11: 1187–1196.

    Article  Google Scholar 

  103. Li G, Tseng A. Low stress packaging of a micromachined accelerometer. IEEE Transactions on Electronics Packaging Manufacturing 2001; 24(1): 18–25.

    Article  Google Scholar 

  104. Lin L. MEMS Post-packaging by localized heating and bonding. IEEE Transactions on Advanced Packaging 2000; 23: 608–616.

    Article  Google Scholar 

  105. Mahajan R, Pecht M. Reliability assessment of a plastic encapsulated RF switching device. Microelectronics Reliability 1997; 38:1607–1610.

    Article  Google Scholar 

  106. Tambe NS, Bhushan B. A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities. Journal of Physics D: Applied Physics 2005;38: 764–773.

    Article  Google Scholar 

  107. von Känel H, Meyer T. Nano-scale defect analysis by BEEM. Journal of Crystal Growth 2000;210: 401–407.

    Article  Google Scholar 

  108. Liang YC, Lin WZ, Lee HP, Lim SP, Lee KH, Feng DP. A neural-network-based method of model reduction for the dynamic simulation of MEMS. Journal of Micromechanics and Microengineering 2001;11: 226–233.

    Article  Google Scholar 

  109. Li YM, Yu SM. A Unified quantum correction model for nanoscale single-and double-gate MOSFETs under inversion conditions. Nanotechnology 2004;15:1009–1016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Li, Y., Jiang, Z. (2008). An Overview of Reliability and Failure Mode Analysis of Microelectromechanical Systems (MEMS). In: Misra, K.B. (eds) Handbook of Performability Engineering. Springer, London. https://doi.org/10.1007/978-1-84800-131-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-131-2_58

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-130-5

  • Online ISBN: 978-1-84800-131-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics