Skip to main content

Development of Theories of Collision and Erosion

  • Chapter
Solid Particle Erosion
  • 1336 Accesses

Abstract

This chapter describes the kind of erosion that involves impacts of solid particles at the target surface. With metal parts, the impact is elastic-plastic. Naturally, creation and development of the theory of erosion presumes an understanding of the theory of collision. This theory, however, still needs further refinement. In the past 25 years, researchers at TUT have paid considerable attention to the studies of the theory of collision and erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.6 References

  1. Davidenkov NN. Dynamic Testing of Metals. Moscow: 1929 (in Russian).

    Google Scholar 

  2. Engel O. Pits in metals by collision wih liquid drops and rigid steel spheres. J. of Research of the National Bureau of Standards. 1960; Vol.64A, N1:61–72.

    Google Scholar 

  3. Eichelberger RJ, Kineke JH. Hypervelocity Impact. In: High-Speed Physics. Vol.2, Moscow: Mir Publ, 1971;204–46 (in Russian).

    Google Scholar 

  4. Goldsmith W. Impact and contact phenomena at medium velocities. In: High-Speed Physics, Vol.2, Moscow: Mir Publ, 1971;153–203 (in Russian).

    Google Scholar 

  5. Kleis I, Uuemõis H. Untersuchung des Strahlverschleissmechanismus von Metallen. Zeitschrift für Werkstofftechnik, 1974;Heft 7:381–89.

    Article  Google Scholar 

  6. Hutchings IM, Winter RE, Field JE. Solid particle erosion of metals: The removal of surface material by spherical particles. Proc Roy Soc London 1974;348A:379–92.

    Google Scholar 

  7. Kleis I. Hypothesis of constancy of required energy for formation of impact crashers, Proc Techn Univ Tallinn 1978;455:3–8 (in Russian).

    Google Scholar 

  8. Rinehart JS, Pearson J. Behaviour of Metals under Impulsive Loads. Moscow: Foreign Publishers, 1958 (in Russian).

    Google Scholar 

  9. Kangur HF. Dynamic Penetration of Rigid Sphere to Metallic Barrier. PhD Thesis, Tallinn 1987 (in Russian).

    Google Scholar 

  10. Kleis IR, Kangur HF. Resistance of metal surface to indentation by spherical projectile at impact. Proc 7th Conf on Erosion by Liquid and Solid Impact. Cambridge 1987;48-1–48-7.

    Google Scholar 

  11. Goodier IN. On the mechanics of indentation and cratering in solid targets of strain-hardering metal by impact of hard and soft spheres. Proc Seventh Hypervelocity Impact Symp, Tampa, Florida 1964;215–60.

    Google Scholar 

  12. Singer S. The influence of meteoritic particles to artifitial sattellites of Earth. Jet Propulsion, 1956;26/12:1071–75.

    Google Scholar 

  13. Lueger Lexikon der Technik. Band 3. Stuttgart:1961.

    Google Scholar 

  14. Gommel G. Stossuntersuchungen Stahlkugel — Stahlplatte im zusammenhang mit Strahlzertrümmerung und Strahlverschleiss. Techn-wiss Berichte MPA Stuttgart, 1967;Heft 67-01.

    Google Scholar 

  15. Tabor D. The Hardness of Metals. Oxford Univ. Press 1951.

    Google Scholar 

  16. Breckel H. Kenngrössen und Verschleiss metallischer Werkstoffe. Diss Univ Stuttgart 1968.

    Google Scholar 

  17. Kleis I, Remi T. On the geometry of impact craters produced by indentors of different shape. Proc Techn Univ Tallinn 1991;728:3–7 (in Russian).

    Google Scholar 

  18. Vitman FF, Stepanov AB. The influence of deformation rate to the deformation resistance of metals. Moscow: In: Some Strength Problems of Solid Body, Acad Sc USSR, 1959;207–21 (in Russian).

    Google Scholar 

  19. Huth G, Thompson J, and Van Valkenburg M. Some new results about the hypervelocity impacts. J of the Applied Mechanics 1957;24/1:65–68.

    Google Scholar 

  20. Kleis I, Remi T. Testing hardned steel targets for dynamic hardness. Proc Estonian Acad Sc Eng 2004;10/1:39–44.

    Google Scholar 

  21. Kangur H, Kleis I. The experimental determination and calculation of the coefficient of restitution. Proc Acad Sc USSR “Solid Mechanics” 1988;5:182–85 (in Russian).

    Google Scholar 

  22. Kleis I. Modelle zur analytischen Bestimmung der Stossziffer bei Metallen. Acta Universitatis Ouluensis C Tehnica 1996;92:8–15.

    Google Scholar 

  23. Frischman F, Haljasmaa I, Pappel T, Rudi U, and Scheglov I. Investigation of particle — wall collision. Proc Estonian Acad Sc Phys Math 1994;43:263–370.

    Google Scholar 

  24. Kleis I, and Hussainova I. Investigation of particle — wall impact process. Wear 1999;233–235:168–73.

    Article  Google Scholar 

  25. Kleis I. Dynamische Härte als eine Physicalische Konstante. Proc of OST-94 Symposium on Machine Design, Oulu: 1994;13–26.

    Google Scholar 

  26. Kleis I. Analytical determination of indentor load in terms of impact energy. Acta Univ Oulu, 1997;C109:25–33.

    Google Scholar 

  27. Kirejev AV, and Malafejev NJ. The influence of ask particles flow parameters on boiler tubes wear. Polzunov Boiler-Turbine Inst Report N5881, Lengingrad, 1938 (in Russian).

    Google Scholar 

  28. Lebedev IK. Erosion in the boilers. Electric Power Stations 1958;11:22–27 (in Russian).

    Google Scholar 

  29. Finnie IA. Erosion of surfaces by solid particles. Wear 1960;3:87–103.

    Article  Google Scholar 

  30. Bitter JGA. A study of erosion phenomena: Part II. Wear 1963;6:169–90.

    Article  Google Scholar 

  31. Nepomnyashchy EF. Friction and wear caused by the stream of solid particles. Interation of Solid Bodies and Calculation of Friction Forces and Wear. Moscow:1971;190 (in Russian).

    Google Scholar 

  32. Abramov JA. The erosion of energetic equipment. Power Engineering 1985;7:15–21 (in Russian).

    Google Scholar 

  33. Beckmann G. and Gotzmann J. Analytical model of the blast wear intensity of metal based on a general arrangement for abrasive wear. Wear 1981;73:325–33.

    Article  Google Scholar 

  34. Peter P. Strahlverschleiss an konventionellen Dampferzeugern-Prognose und Verschleissschutz. Wiss Berichte TH Zittau, 1004, 1989:Lecture NV/3.

    Google Scholar 

  35. Tadolder J. The influence of the geometry of abrasive particle on wear rate of metals. Proc Techn Univ Tallinn 1966;237:3–13 (in Russian).

    Google Scholar 

  36. Levin SM. Investigation of the Erosion of Steels in Different Conditions. Dissertation, Moscow Institute of Petrochemical and Gas Industry, 1978;207 (in Russian).

    Google Scholar 

  37. Ellermaa RR. Erosion prediction of pure metals and carbon steels. Wear 1993;162–164:1114–22.

    Article  Google Scholar 

  38. Beckmann G. and Kleis I. Abtragvershleiss von Metallen. Leipzig:1983;184. (Distributed by Springer — Verlag Wien — New York).

    Google Scholar 

  39. Lepikson H. and Siimpoeg R. The methodics of erosion study at low temperatures and some results. Proc Techn Univ Tallinn 1969;271:31–39 (in Russian).

    Google Scholar 

  40. Üksti L. Physicochemical aspects of wet sand erosion mechanism. Proc Techn Univ Tallinn 1983;560:19–27 (in Russian).

    Google Scholar 

  41. Neiman A. Relationship Between Abrasivity of Sands and Their Geological and Physical Indicators. Research Report, Tallinn 1968 (in Estonian).

    Google Scholar 

  42. Uuemõis H. An Investigation into Some Laws of Hard-Particle Erosion. PhD Thesis, Tallinn 1967;185 (in Russian).

    Google Scholar 

  43. Uetz H. and Gross KJ. Strahlvershleiss in Abrasion and Erosion, München Wien: Carl Hanser Verlag, 1986;326–78.

    Google Scholar 

  44. Langeberg I. Study of Erosion at Small Angles of Impact. PhD Thesis, Tallinn 1968;196 (in Russian).

    Google Scholar 

  45. Kleis I. Effect of Hardness of Abrasive Grains Metal Erosion. Research Report. Tallinn 1961;25 (in Estonian).

    Google Scholar 

  46. Kleis I. and Remi T. Adapting the energetic erosion theory to hardened steels. Proc Estonian Acad Sc Eng 2004;10/1:45–52.

    Google Scholar 

  47. Kleis I. Probleme der Bestimmung des Strahlverschleisses bei Metallen. Wear 1969;13, 199–215.

    Article  Google Scholar 

  48. Kleis I. About the erosion of metals. Proc Techn Univ Tallinn 1959;168:3–25 (in Russian).

    Google Scholar 

  49. Kleis I, Pappel T, and Arumäe H. Strahlverschleissuntersuchungen an modernen Konstruktionswerkstoffen. Wiss. Berichte Ingenierhochschule Zittau, 1982;383:64–66.

    Google Scholar 

  50. Beckmann G, Dierich P, Gellrich R, Gotzmann J, and Pietschmann F. Modelling of severe wear; asurvey of the contributions of the Technical University of Zittau to tribology. J Tribology International 1996;29/3:215–20.

    Article  Google Scholar 

  51. Gotzmann J. Modellierung des Strahlverschleisses an keramischen Werkstoffen. Schmierungstechnik, Fachzeitschrift für Tribotechnik, Berlin: VEB Verlag Technik 1989;20/11:324–29.

    Google Scholar 

  52. Beckmann G, and Gotzmann J. Modelling blast wear on ceramic materials. Proc Techn Univ Tallinn 1985;609:102–9 (in Russian).

    Google Scholar 

  53. Greenwood DA. and Williamson JBP. Contact of nominally flat surfaces. Proc Roy Soc Lond, 1986;A295:300–19.

    Google Scholar 

  54. Evans AG, Gulden ME. and Rosenblatt M. Impact damage in brittle materials in elastic-plastic regime. Proc Roy Soc Lond, 1978;A361:343–65.

    Google Scholar 

  55. Sheldon GL, Finnie IJ. On the ductile behaviour of nominally brittle materials during erosive cutting. J of Engineering for Industry 1966;Nov:387–92.

    Google Scholar 

  56. Gulden ME. Solid-particle erosion of high-technology ceramics (Si3N4, glassbonded Al2O3 and MgF2). American Society for Testing and Materials. ASTM STP 664,1979;101–22.

    Google Scholar 

  57. Beckmann G, Dierich P. Tendenzdarstellungen von Mikrohärteverteilugen technischer Werkstoffe. Schmierungstechnik, Fachzeitschrift für Tribotechnik, VEB Verlag Technik Berlin 1989;20/12.

    Google Scholar 

  58. Kulu P. Principles of Creation of Erosion Wear Resistant Powder Materials and Coatings. Doctoral Thesis, Tallinn 1989 (in Russian).

    Google Scholar 

  59. Kulu P. Wear Resistance of Powder Materials and Coatings Tallinn: Valgus Publishers, 1988;119 (in Russian).

    Google Scholar 

  60. Kulu P, Veinthal R, and Käerdi H. Characterisation and modelling of erosion wear of powder composite materials and coatings. Int J Materials and Product Technology, 2007;28/3–4:425–447.

    Article  Google Scholar 

  61. Ponton C, Rowlings R. Vickers indentation fracture toughness. Part 1; Test review of literature and formulation of standardised indendation thoughness equation. Mater Sci Tehnol 1989;5:865–72.

    Google Scholar 

  62. Veinthal R. Characterisation and modelling of Erosion Wear of Composite Materials and Coatings, PhD Thesis, TTU Press, 2005.

    Google Scholar 

  63. Wahl H. Verschleissprobleme in Braunkohlenbergbau. Braunkohle, Wärme u. Energie, 1951;3:75–87.

    Google Scholar 

  64. Khrushchov MM. and Babichev MA. Study of Metals Wear. Moscow: 1960;351 (in Russian).

    Google Scholar 

  65. Wellinger K. and Uetz H. Gleitverschleiss, Spülverschleiss, Strahlverschleiss unter der Wirkung von körnigen Stoffen. VDI-Forshungsheft, 1955;449/B21:1–40.

    Google Scholar 

  66. Wellinger K, Uetz H. and Gürleyik M. Gleitverschleiss-Untersuchungen an Metallen und nichtmetallischen Harstoffen unter wirkung körnigen Stoffen. Wear, 1968;11:173–99.

    Article  Google Scholar 

  67. Tereshtshenko AF. and Gavrisch VA. About the abrasive selection for testing of surfacing to erosion. Abstracts of Tribological Conference. Kiev 1970;48–51 (in Russian).

    Google Scholar 

  68. Tadolder J. Erosion of Pure Metals. PhD Thesis. Tallinn 1966 (in Estonian).

    Google Scholar 

  69. Uetz H. and Khosrawi MA. Strahlverschleiss. Aufbereitungstechnik, 1980;21/5:253–66.

    Google Scholar 

  70. Stupnitsky A, Kleis I. and Rufanov Y. Wear characterictics of comercially pure metals in a grazing abrasive stream. Proc Techn Univ Tallinn 1981;381:23–32 (in Russian).

    Google Scholar 

  71. Kleis I. Grundlagen der Werkstoffauswahl bei der Bekämpfung des Strahlverschleisses. Werkstofftechnik, 1984;15:49–58.

    Article  Google Scholar 

  72. Wellinger K. and Uetz H. Einfluss der Schweissbedingungen auf das Verschleissverhalten von Auftragschweissungen. Schweissen und Schneiden, 1960;12:465–72.

    Google Scholar 

  73. Katavic I. Untersuchungen über die Beeinflussung des Gefüges karbidischer Gusseisen bei abrasivet Verschleissbeanspruchung. Wear 1978;48:35–53.

    Article  Google Scholar 

  74. Juzvenko J. and Paschenko M. The chromium carbide based alloys for mechanized surfacing. Automatic Welding 1969;3:24–28 (in Russian).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Development of Theories of Collision and Erosion. In: Solid Particle Erosion. Springer, London. https://doi.org/10.1007/978-1-84800-029-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-029-2_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-028-5

  • Online ISBN: 978-1-84800-029-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics