Advertisement

ICCS 2007 pp 87-93 | Cite as

Categorization of Musical Instrument Sounds Based on Numerical Parameters

  • Rory A. Lewis
  • Alicja Wieczorkowska

Abstract

In this paper we present methodology of categorization of musical instruments sounds, aiming at the continuing goal of codifying the classiffication of these sounds for automating indexing and retrieval purposes. The proposed categorization is based on numerical parameters. The motivation for this paper is based upon the fallibility of Hornbostel and Sachs generic classiffication scheme, most commonly used for categorization of musical instruments. In eliminating the discrepancies of Hornbostel and Sachs’ classiffication of musical sounds we present a procedure that draws categorization from numerical attributes, describing both time domain and spectrum of sound, rather than using classiffication based directly on Hornbostel and Sachs scheme. As a result we propose a categorization system based upon the empirical musical parameters and then incorporating the resultant structure for classiffication rules.

Keywords

Audio Signal Musical Instrument Signal Envelope Music Information Retrieval Musical Sound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenne, M.: Storage and retrieval of musical documents in a FRBR-based library catalogue: Thesis, Oslo University College Faculty of journalism, library and information science, (2004).Google Scholar
  2. Cosi, P, De Poli, G., and Lauzzana, G. (1994). Auditory Modelling and Self-Organizing Neural Networks for Timbre Classification Journal of New Music Research, 23, 71-98.CrossRefGoogle Scholar
  3. Demsar, J., Zupan, B. and Gregor Leban: http://www.ailab.si/orangeGoogle Scholar
  4. Doerr, M.: Semantic Problems of Thesaurus Mapping: Journal of Digital Information. Volume 1, issue 8, Article No. 52, 200-03-26, 2001-03, (2001).Google Scholar
  5. Eronen, A. and Klapuri, A. (2000) Musical Instrument Recognition Using Cepstral Coefficients and Temporal Features. Proceedings of the IEEE Inter-national Conference on Acoustics, Speech and Signal Processing ICASSP 2000 (753-756), Plymouth, MA.Google Scholar
  6. Fujinaga, I. and McMillan, K. (2000). Realtime recognition of orchestral instruments. Proceedings of the International Computer Music Conference (141-143).Google Scholar
  7. Hornbostel, E. M. V., Sachs, C. (1914). Systematik der Musikinstru-mente. Ein Versuch. Zeitschrift fur Ethnologie, Vol. 46, No. 4-5, 1914, 553–90, available at http://www.uni-bamberg.de/ppp/ethnomusikologie/HS-Systematik/ HS-SystematikGoogle Scholar
  8. Kaminskyj, I. (2000). Multi-feature Musical Instrument Classiffier. MikroPoly-phonie 6 (online journal at http://farben.latrobe.edu.au/).Google Scholar
  9. Martin, K. D. and Kim, Y. E. (1998). 2pMU9. Musical instrument identiffication: A pattern-recognition approach. 136-th meeting of the Acoustical Soc. of America, Norfolk, VAGoogle Scholar
  10. Opolko, F. and Wapnick, J. (1987). MUMS - McGill University Master Samples. CD’s.Google Scholar
  11. Patel, M. and Koch, T. and Doerr, M. and Tsinaraki, C.: Semantic Inter-operability in Digital Library Systems. IST-2002-2.3.1.12 Technology-enhanced Learning and Access to Cultural Heritage. UKOLN, University of Bath, (2005).Google Scholar
  12. Quinlan, J.R. 2pMU9. Bagging, boosting, and C4. 5. Proceedings of the Thirteenth National Conference on Artifficial Intelligence. Volume 725, 730, (1996).Google Scholar
  13. SIL International (1999). LinguaLinks Library. Version 3.5. Published on CD-ROM, 1999. The Internet: http://www.silinternational.org/LinguaLinks/Anthropology/ ExpnddEthnmsclgyCtgrCltrlMtrls/MusicalInstrumentsSubcategorie.htmGoogle Scholar
  14. Wieczorkowska, A. (1999). Rough Sets as a Tool for Audio Signal Classiffication. In Z. W. Ras, A. Skowron (Eds.), Foundations of Intelligent Systems (pp. 367 - 375). LINCS/LNAI 1609, SpringeGoogle Scholar
  15. Gomez, E. and Gouyon, F. and Herrera, P. and Amatriain, X.: Using and enhancing the current MPEG-7 standard for a music content processing tool, Proceedings of the 114th Audio Engineering Society Convention, Amsterdam, The Netherlands, March, (2003).Google Scholar
  16. Wieczorkowska, A., Wr¶oblewski, J., Synak, P. and Sl»ezak, D.: Application of temporal descriptors to musical instrument sound recognition: in Proceedings of the International Computer Music Conference (ICMC’00), Berlin, Germany, (2004)Google Scholar
  17. Peeters, G., McAdams, S. and Herrera, P.: Instrument sound descriptin in the context of MPEG-7: in Proceedings of the Internaitnal Computer Music Conference (ICMC’00), Berlin, Germany, (2000).Google Scholar
  18. Eronen, A. and Klapuri, A. (2000) Musical Instrument Recognition Using Cep-stral Coe±cients and Temporal Features. Proceedings of the IEEE Internatinal Confernece on Acoustics, Speech and Signal Processing ICASSP 2000 (753-756), Plymouth, MA.Google Scholar
  19. Fujinaga I. and McMillan, K. (2000). Realtime recognition of orchestral instruments. Proceedings of the International Computer Music Confernece (141- 143).Google Scholar
  20. Kaminskyj, I. (2000). Multi-feature Musical Instrument Classiffier. Mikro Poly-phonie 6 (online journal at http://farben.latrobe.edu.au/).Google Scholar
  21. Martin, K. D. and Kim, Y. E. (1998). 2pMU9. Musical instrument identiffica-tion: A pattern-recognition approach. 136-th meeting of the Acoustical Soc. of America, Norfolk, VA.Google Scholar
  22. Wieczorkowska, A. (1999). Rough Sets as a Tool for Audio Signal Classiffication. In Z. W. Ras, A. Skowron (Eds.), Foundations of Intelligent Systems (pp. 367- 375). LNCS/LNAI 1609, Springer.Google Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Rory A. Lewis
    • 1
  • Alicja Wieczorkowska
    • 2
  1. 1.University of North CarolinaCharlotteUSA
  2. 2.Polish-Japanese Institute of Information TechnologyWarsawPoland

Personalised recommendations